
Cloud-enabling a Collaborative Research Platform: The GABBs
Story

Rajesh Kalyanam
Purdue University

West Lafayette, Indiana 47907
rkalyana@purdue.edu

Rob Campbell
Purdue University

West Lafayette, Indiana 47907
rcampbel@purdue.edu

Derrick Kearney
Purdue University

West Lafayette, Indiana 47907
dsk@purdue.edu

Leif Delgass
Purdue University

West Lafayette, Indiana 47907
ldelgass@purdue.edu

Larry Biehl
Purdue University

West Lafayette, Indiana 47907
biehl@purdue.edu

Lan Zhao
Purdue University

West Lafayette, Indiana 47907
lanzhao@purdue.edu

Carolyn Ellis
Purdue University

West Lafayette, Indiana 47907
carolynellis@purdue.edu

Carol Song
Purdue University

West Lafayette, Indiana 47907
cxsong@purdue.edu

ABSTRACT
Modern cyberinfrastructures typically involve tightly integrated
compute, storage and web application resources. They also form the
basis of science gateways, which add their own science-specific pro-
cessing or visualization capabilities. While some science gateways
are intended as the central resource provider for a certain scientific
community, others provide generic capabilities that are intended for
further customization at each installation site. However, replicating
their setup is a non-trivial task often involving specific operating
system, software package and configuration choices while also
requiring allocation of the actual physical computing resources.
Cloud computing provides an attractive alternative, simplifying re-
source provision and enabling reliable replication. We describe our
ongoing efforts to cloud-enable a geospatial science gateway host-
ing general-purpose software building blocks termed GABBs, that
provide geospatial data management, analysis, visualization and
processing capabilities. We describe the various compute and stor-
age resources and software underlying these building blocks and
our automation of the deployment, software installation and config-
uration of this science gateway on the AmazonWeb Services (AWS)
cloud platform. Some of the challenges that were encountered and
resolved during this cloud-enabling process are also described.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PEARC17, July 09-13, 2017, New Orleans, LA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5272-7/17/07. . . $15.00
https://doi.org/10.1145/3093338.3093353

CCS CONCEPTS
• Information systems → Open source software; Computing
platforms; • Software and its engineering → Cloud comput-
ing; Organizing principles for web applications; System administra-
tion; Maintaining software;

KEYWORDS
Cyberinfrastructure, science gateway, cloud computing

ACM Reference format:
Rajesh Kalyanam, Rob Campbell, Derrick Kearney, Leif Delgass, Larry Biehl,
Lan Zhao, Carolyn Ellis, and Carol Song. 2017. Cloud-enabling a Collabora-
tive Research Platform: The GABBs Story. In Proceedings of PEARC17, New
Orleans, LA, USA, July 09-13, 2017, 8 pages.
https://doi.org/10.1145/3093338.3093353

1 INTRODUCTION
Scientific research is now an increasingly collaborative effort. Re-
searchers on a project are often spread globally, contributing data
and tools to foster collective progress. Scientific tools are also in-
creasingly publicized to enable widespread and quicker adoption
and feedback. This public availability of data and tools aids class-
room instruction, keeping future generations of researchers abreast
of recent developments in the field. Science gateways offer a natu-
ral solution for such collaborative efforts. They are in effect a web
platform offering data and scientific tool management, access to
high performance computing resources, and user community and
social networking support.

While some science gateways function as a central resource
provider for a scientific discipline, others are intended as general-
purpose frameworks that can be customized and installed at various
locations supporting either a specific user community or research
initiative. The HUBzero cyberinfrastructure framework [8] is one
such customizable framework for collaborative scientific research.
Out-of-the-box, HUBzero provides user and community manage-
ment, data management, digital object identifier (DOI) generation

https://doi.org/10.1145/3093338.3093353
https://doi.org/10.1145/3093338.3093353

PEARC17, July 09-13, 2017, New Orleans, LA, USA R. Kalyanam et al.

for data publication and browser-based Linux desktop environ-
ments for tool development. HUBzero has been used in a diverse
range of disciplines from nanotechnology, material science, and
biomedical engineering to earthquake engineering. However, one
can notice specific similarities in these usage patterns. Several sci-
ence gateways that cater to interdisciplinary communities studying
drought conditions, effects of climate change on crops, and the
economics of global food production are based on HUBzero. A com-
mon theme in these gateways is a need for value-added services
specific to geospatial data; the ability to preview, overlay, anno-
tate, explore and transform such data. The GABBs (Geospatial Data
Analysis Building Blocks) [1] project was developed to add these
services, adding a layer of geospatial-data specific capabilities to
HUBzero, while retaining the generality that allows for site-specific
customization. GABBs is funded by the NSF DIBBs program that en-
courages the development of data-centric cyberinfrastructure that
provides data services and capabilities fostering interdisciplinary
research.

The addition of these capabilities calls for additional storage and
visualization resources and seamless integration into the HUBzero
framework. However, these requirements raise the barrier to en-
try for researchers attempting to set up their own GABBs-enabled
gateway. While potential users of this framework can explore its
capabilities on a central pre-configured demonstration platform,
they will most certainly lack the administrative privileges to mod-
ify or add content without relying on dedicated support. It then
becomes important to simplify the set up of such gateways, striving
for as much automation as possible. Virtual machines (VMs) are
the obvious choice for distributing such pre-configured machine
images. However, due to the several interconnected resources re-
quired, several separate VMs need to be installed and configured
to set up these interconnections. More importantly, the storage
and visualization servers require non-trivial resources to function
optimally. This precludes installation on most personal computers.

Cloud-computing services like Amazon Web Services, Google
Cloud Platform and Microsoft’s Azure are ideal for such setups due
to the availability of a wide variety of machine images for various
operating systems, as well as choice of the hardware including CPU,
memory and graphics processors. In addition, they often provide
deployment management services that enable the automation of
creation, configuration and deployment of resources. In this paper,
we describe our experience using AWS CloudFormation to config-
ure and deploy the interconnected resources that comprise a typical
GABBs-enabled HUBzero gateway. We begin with a description
of the GABBs project, the various external resources that are an
integral part of GABBs and our reasons for separating them from
the central HUBzero installation. Next, we describe how CloudFor-
mation can be employed to automate the software installation and
configuration of these individual resources as well as some issues
we encountered. Since this is still work in progress, we end with a
description of our pending tasks and our vision of the way forward.
While the broader GABBs project comprises of several inter-related
development efforts involving multiple developers and domain sci-
entists, we focus on a small part of that effort here; namely the
packaging and dissemination. However, to establish appropriate

context, we start with an overview of the GABBs project and its
components.

2 THE GABBS PROJECT
2.1 HUBzero Cyberinfrastructure Framework
Before describing the various resources implementing GABBs ca-
pabilities, it is first necessary to describe the HUBzero framework
and its extension to include GABBs capabilities.

HUBzero grew out of efforts to generalize the cyberinfrastruc-
ture underlying nanoHUB [7], a platform for research and educa-
tion in nanotechnology. NanoHUB allows users to build simula-
tion tools, share data and results, generate digital object identifiers
(DOI) for publication and develop course materials for instruction
in nanotechnology. A core component of nanoHUB is the content
management system (CMS) that allows all of these pieces to be
integrated into a single web platform with a uniform look-and-feel.
Another component of nanoHUB and perhaps the defining feature
of HUBzero is support for simulation tool creation and use. Any
scientific code that can be executed in a Linux environment can be
packaged into a tool that can be run on-demand in a containerized
environment accessible through the user’s web browser. In effect,
these tool containers provide a complete Linux desktop environ-
ment accessible on a web browser. In addition to the webserver
serving up the CMS, one or more execution hosts can be used in
conjunction with middleware code that configures, manages and
serves these tool containers from these execution hosts. HUBzero
resulted from the abstraction of both the CMS and middleware used
in nanoHUB into a generic cyberinfrastructure framework. Each
instance of HUBzero termed a hub can be configured with its own
set of templates, and hosts its own set of tools, resources and web
content.

2.2 GABBs Capabilities
The GABBs project was envisioned from observations of common
usage patterns among various hubs. For instance, users of theWater-
HUB [9], Geoshare [4] and U2U [3] hubs studying various aspects
of droughts, agricultural economics and climate science all required
a geospatial data management system with similar capabilities. The
desired systemwould support quick data previews, the construction
of intuitive overlays and general-purpose tools for manipulating
geospatial data.

GABBs accomplishes these goals via the following contributions:

(1) A data management system, iData [6] is integrated into the
primary hub collaboration space: hub projects. iData differs
from the existing data management capabilities of HUBzero
in its special handling of geospatial data. For instance, meta-
data is automatically extracted from various raster and vector
file formats and indexed for subsequent search.

(2) Geospatial files managed by iData can also be previewed
directly on the web browser with support for overlays of
multiple files.

(3) General-purpose hub tools supporting various operations
on geospatial and spreadsheet data can be automatically
launched on individual files from the iData file management
interface.

Cloud-enabling a Collaborative Research Platform: The GABBs Story PEARC17, July 09-13, 2017, New Orleans, LA, USA

2.3 GABBs Components
Underlying iData is an external iRODS [10] server that manages
the physical files uploaded to iData. iRODS is a distributed file man-
agement system that presents a uniform Unix filesystem view of its
files while abstracting away the actual details of where the files are
stored. This allows storage resources to be added or expanded with-
out affecting the user’s view of their data. More importantly, iRODS
supports the execution of code in response to various events during
a file’s lifecycle. For instance, we can attach a function that automat-
ically processes and extracts metadata from structured geospatial
files as soon as they are uploaded. In addition, locating such pro-
cessing on the data storage system frees up the hub webserver from
devoting valuable resources to this task. There is a myriad of ways
in which files can be uploaded to iData and not just through the
hub’s web interface. Locating the processing of these files at the
storage site makes it agnostic to the upload mechanism used. While
pertinent details of this integration of iRODS and HUBzero can be
found later in this paper, we refer interested readers to [5] for a
complete account.

Geospatial file preview is a non-trivial task that involves pro-
cessing the raw physical file before registering it to a map server
that serves map layers to be displayed on a web browser using
Javascript libraries. GABBs employs GeoServer to serve such map
layers. However, additional pre-processing is often required to
convert raw files to the specific formats that GeoServer supports.
Co-locating GeoServer with the iRODS server reduces the required
file transports, improving performance.

While web-based previews offer a quick overview of the data
in a geospatial file, researchers often need to perform non-trivial
transformations on the original file. For instance, they may need to
reclassify, reproject or run various image processing algorithms on
the raw data in the file. In addition, geospatial data from sources
such as satellite feeds is often multidimensional, containing di-
verse data in separate channels. For instance, a single file could
contain vegetation cover, CO2 indices and cloud cover data. Re-
searchers are often interested in only a subset of the data. Such
extraction as well as all the processing mentioned above can be
performed using the MultiSpec [2] tool that can handle such mul-
tispectral (multi-channel) or even hyperspectral data. Due to its
general-purpose nature, we intend MultiSpec to supplement the
GABBs data management framework, providing a geospatial data
visualization, processing and transformation tool. Sometimes, re-
searchers may just seek intuitive data displays combining data from
various sources. For instance, a researcher may want to display a
map of the state of Indiana with markers denoting the various water
assessment stations along the Wabash River. Each such station may
have corresponding spreadsheet data containing water quality in-
formation, contaminant and mineral densities over a certain period.
An intuitive display would combine these diverse sources of infor-
mation, allowing users to quickly study plots of the spreadsheet
data to decipher trends over time and location. The GeoBuilder
hub tool was developed as a component of GABBs that can be used
to build such displays combining any geospatial and spreadsheet
data files. However, in addition to flat 2-D maps, GeoBuilder can
also display 3-D geospatial data overlaid on the globe. This is espe-
cially useful when visualizing terrain data that loses perspective

when viewed in 2-D. To support such visualization and optimize the
loading of large datasets, a separate visualization server running
the osgEarth geospatial and terrain rendering software is used to
build GeoBuilder displays. Due to the hardware (graphics card)
and memory requirements of such a visualization server, it is sepa-
rated out from the hub webserver with the middleware supporting
load-balancing across one or more such visualization servers.

2.4 GABBs System Design
In addition to the default file storage provided by projects inHUBzero,
efforts are underway to integrate various external storage providers
such as Dropbox, Google Drive and Globus using PHP’s Flysystem
abstraction. Rather than implement an iRODS Flysystem adapter
from scratch for our integration, it was decided to use the pre-
existing local Flysystem adapter to access iRODS files mounted
to the hub webserver’s local file system. The iRODS FUSE client
can be used to mount iRODS file-spaces to appear as a local di-
rectory on any remote machine. Reads and writes to iRODS are
then as simple as reading and writing to a local directory on the
webserver. However, this requires the iRODS FUSE client to be set
up and configured to allow access to the hub’s web user, which
in turn requires knowledge of the iRODS server settings such as
hostname, port, username and password. While some performance
issues were encountered during file listing operations on the iRODS
FUSE mount, caching of filestat information was incorporated to
overcome this issue resulting in a ten-fold improvement in time
taken to list directory contents.

As mentioned previously, one of the GABBs contributions is that
metadata from geospatial files is automatically extracted on upload.
Geospatial files are typically highly structured and contain useful
metadata such as geographic bounds and projection information
that aids in their visualization. Moreover, results of simulations
or curated datasets typically contain additional metadata describ-
ing the dataset. Rather than have users recreate such metadata,
the expectation is that it would be extracted automatically when
present. GABBs uses iRODS microservices to implement such pro-
cessing in response to file uploads. More specifically, iRODS rules
can be created to execute microservices in response to various file
events such as upload, rename and delete. iRODS rules can also
be executed on-demand via iRODS client APIs. This feature is ex-
ploited to implement on-demand file previews via a microservice
that performs the necessary processing to register a map layer on
GeoServer. These additional rules and microservices form part of
the GABBs-specific installation of our iRODS server.

While desktop versions of the MultiSpec tool for both the Win-
dows and Mac platforms have been available since the early 1990s,
it had to be extended to run on Linux using wxWidgets before
packaging and deploying it as a hub tool. GeoBuilder was devel-
oped using the HUBzero Rappture tool development kit. While
space constraints preclude a complete description of Rappture here,
suffice it to say that Rappture simplifies the design of a graphical
user interface (GUI) for any simulation tool. As a part of GABBs
efforts, new map input and output GUI elements were added to
Rappture and leveraged in building the GeoBuilder tool. Finally,
the render (visualization) server that composes and serves map
layers to GeoBuilder was based on a combination of osgEarth and

PEARC17, July 09-13, 2017, New Orleans, LA, USA R. Kalyanam et al.

Rappture server elements. Figure 1 illustrates the various GABBs
components and where they fit into the broader HUBzero paradigm.

3 INSTALLING GABBS
We next describe a canonical installation of GABBs on a HUBzero
hub. This illustrates both the various software installation and
configurations required, as well as the confines of the HUBzero
paradigm that we need to work within. Similar steps need to be
followed when replicating such deployment in the cloud.

3.1 iRODS and GeoServer
The simplest installation of iRODS involves a single iCAT-enabled
resource server. iCAT is the iRODS catalog that manages the phys-
ical files and their metadata. iRODS provides several different in-
stallation packages for various OSes and catalog database choices.
The only non-trivial aspect of the installation is an interactive
configuration process that provides the user with the option to
choose the Linux owner, administrator name, password, physical
file location, etc. iRODS also provides templates for microservice
creation and packaging using the EPM packaging software. EPM
automatically detects the operating system where the build occurs
and generates an appropriate software package; for instance .deb
on a Debian machine and .rpm on RedHat or CentOS. Installation
of the microservice on an iRODS server is then just a simple matter
of installing one of these packages. If any new iRODS rules are
required, they can be added to the standard iRODS rule file on the
iRODS server.

GeoServer is written in Java and can be configured to either
run on its internal Jetty webserver or an external Tomcat web-
server. Various GeoServer binaries are available for download and
installation is just a matter of extracting the binary and placing
it somewhere on the target server machine. If an appropriate ver-
sion of the Java runtime environment is present on this machine,
GeoServer can be started using the provided startup scripts after
configuring environment variables to point to the installation di-
rectory and Java. The final step is to configure the iRODS server to
point it to the local GeoServer. This step is necessary to allow the
file preview microservice to process files and register them as map
layers on the local GeoServer. iRODS microservices can access any
server configuration variables, making this an ideal approach for
handling such additional configuration.

Metadata extracted via the microservices is also indexed into the
Apache Solr server running on the hub webserver. This requires
another server configuration setting pointing to the Solr server’s
endpoint.

3.2 GABBs CMS and iRODS FUSE mount
The various GABBs CMS contributions such as the iRODS storage
provider for hub projects and the code responsible for metadata
management and file previews in iData are designed as HUBzero
plugins. HUBzero plugins allow enhancements or overrides of the
generic HUBzero CMS without having to tinker with the generic
CMS code base. This also allows for seamless integration into the
hub projects interface. Plugin installation is as simple as placing the
plugin files in the appropriate directories and running a migration
script that makes the necessary database updates. Plugins allow

for site-specific configuration variables, which can be set in these
same migration scripts.

Creation of the iRODS FUSE mount requires the installation of
the iRODS client package on the hub webserver, the creation of a
directory owned by the web user, addition of the user to the fuse
group and the actual creation of the mount using the irodsFs FUSE
mount creation command.

3.3 MultiSpec and GeoBuilder Tools
Hub tools normally go through a tool pipeline process consisting
of initial development, build, testing and finally publication when
the tool is made available to all hub users. Of course, subsequent
installations of these tools on new hubs don’t need to go through
the pipeline process. Instead, we can skip ahead to the last step in
the process; i.e. publication. On a new hub, tool publishing scripts
can start with a tarball of an installed tool, extract, copy to the
installation target, and, make the necessary database entries adding
this tool to the set of available hub resources.

Tool containers are essentially generic Linux virtual machines
based on a standard template. When a tool is installed on a hub,
it is not directly installed into a tool container. Instead, tools are
installed on execution hosts at a standard path and the middle-
ware mounts this path onto tool containers when they start up.
A similar approach is taken with tool software dependencies that
aren’t provided by default in the base operating system in the tool
containers. Such dependencies are installed at a standard path on
the execution host that is mounted onto tool containers. Thus, the
tool installation process involves installing the actual tool binaries
and the necessary dependencies at separate locations.

3.4 Visualization Server
Going together with the GeoBuilder tool is the visualization (ren-
der) server that composes and streams map views to the tool. The
render server software assumes certain hardware specifications,
but beyond that is a rather straightforward installation of osgEarth,
Rappture and other software dependencies.

4 PACKAGING GABBS
4.1 Why Amazon Web Services?
All the GABBs components described so far were developed and
deployed on a production science gateway, MyGeoHub.org [11].
Individual users can use MyGeoHub to explore various GABBs
capabilities and research groups can host their data and tools there;
however, it isn’t intended as a central science gateway for geospa-
tial capabilities. GABBs is designed with the DIBBs program goals
in mind and provides general-purpose building blocks that can be
added to any hub and subsequently configured and extended as
the user sees fit. In addition, data services are provided to foster
interoperability with non-HUBzero cyberinfrastructures as well.
To simply the GABBs-enabling of any HUBzero hub, it is vital that
the installation process be as streamlined and straightforward as
possible. This typically involves developing generic-enough soft-
ware packages that contain configuration scripts for site-specific
installations.

Amazon Web Services (AWS) and cloud computing platforms in
general serve some important roles in this paradigm:

Cloud-enabling a Collaborative Research Platform: The GABBs Story PEARC17, July 09-13, 2017, New Orleans, LA, USA

Figure 1: GABBs system diagram. Pieces in dark blue represent GABBs components; blue, green and orange regions represent
natural packageable resource blocks.

(1) They make for ideal test-beds when developing such pack-
ages. While personal virtual machines (VM) can be used
for such tests, an individual VM for each distinct GABBs
resource can be a resource drain on personal machines. In
addition, resources such as the visualization server have
hardware requirements that cannot be satisfied on typical
personal computers.

(2) Individual users of GABBs who do not have access to com-
pute resources can get up and running with a working hub
and GABBs capabilities in a few hours on nominally priced
AWS compute resources. Even users who have pre-existing
hubs may choose to first test GABBs on AWS resources be-
fore committing to an install on their own hubs. As more
organizations and universities move towards cloud-managed
resources, the availability of a GABBs installation for AWS
increases its visibility.

(3) The necessary rpm and deb packages for external instal-
lations of GABBs are a byproduct of this cloud-enabling
process. While AWS allows for snapshots of machines to
be saved and made public, sustainability is better served by
using upgradeable packages for any software installation. In
addition, AWS machine images cannot contain hardcoded
passwords, necessitating a configurable installation.

The above considerations and the HUBzero team’s use of the
AWS Marketplace as their dissemination venue led us to select
AWS as our cloud-deployment venue of choice. Due to the multiple
interconnected resources that constitute a typical GABBs instal-
lation, any cloud-based deployment would require the separate
deployment of these individual resources, followed by software
installation and the configuration of the connections between these
resources. While these latter steps can be delegated to the user
by simply pointing them to a package repository and providing
installation scripts and configuration instructions, our goal is to
make the install as simple as hitting a “go” button. This reduces
the barrier to entry for the domain scientists that are our primary
target audience while also minimizing the possibility of user error.

The AWS CloudFormation service simplifies this task of resource
deployment, software installation and configuration. CloudForma-
tion is organized around templates and stacks where templates
define the number and type of resources required, their properties
and parameters and optional metadata such as additional package
repositories and initialization scripts. Stacks on the other hand are
the set of actual AWS resources deployed using a template as a
blueprint.

PEARC17, July 09-13, 2017, New Orleans, LA, USA R. Kalyanam et al.

4.2 CloudFormation for GABBs
While AWS CloudFormation templates can include any of the
AWS resource types such as elastic compute cloud servers (EC2),
databases, DNS servers, load balancers or security groups; the sim-
plest GABBs installation only requires three separate EC2 instances
and a security group or more simply, a firewall. The goal is to allow
all traffic between these instances by default while allowing the
user to set up inbound access from their personal machines or orga-
nization as needed. The three EC2 instances correspond to distinct
pieces identified before:

(1) An iRODS server with a local installation of GeoServer and
the necessary microservices

(2) A HUBzero webserver that also serves as the execution host
for tool containers, includes the GABBs CMS, the iRODS
FUSE mount and the MultiSpec and GeoBuilder tools and
their dependencies

(3) A visualization (render) server

An EC2 resource definition in a CloudFormation template usu-
ally requires a few mandatory properties; for example, the type of
instance (i.e. hardware specifications) and the Amazon Machine
Image (AMI) to be used for this instance. Every EC2 instance is
based on an AMI, akin to a virtual machine’s disk image. AWS pro-
vides both official and other hosted AMIs for different versions of
common operating systems. The HUBzero AWSMarketplace image
is based on CentOS 6.5, which we use for the iRODS server as well.
The render server is based on Debian 8 and requires an AWS GPU
(graphics processing unit) instance. In the simplest sense, AMIs
are just snapshots of an instance. Any software installed on the
instance before taking the snapshot, is available on any new EC2 in-
stance created using that snapshot. However, the AWS Marketplace
places restrictions on the contents of AMIs that can be published.
For instance, they cannot contain hardcoded administrator user-
names or passwords. This restriction does not affect the render
server whose AMI can be created from a snapshot of a Debian 8
machine that has all the necessary software installed. However, in
the case of the hub and the iRODS servers it necessitates starting
with a barebones AMI and scripting the installation of additional
software using randomly generated or user-specified usernames
and passwords.

As mentioned previously, such installation could be delegated
to the user, providing them with instructions for accessing the
instance and installing necessary software. However, to simplify
GABBs setup, it was decided to automate as much of it as possible.
This requires scripting these installations to run after instance boot
up. CloudFormation supports two separate but related initialization
mechanisms, UserData and cloud-init. Broadly speaking, UserData
allows a bash script to be provided as a parameter for an EC2
resource in a CloudFormation template and is then run on instance
boot up. Cloud-init provides directives for placing files at certain
locations on the instance, adding package repositories, running
commands on boot up and creating additional system users to
name a few. Thus, a combination of cloud-init and UserData can be
used to add an external repository (containing our GABBs packages
in this case) and then install packages from that repository after
instance boot-up.

Since we use CentOS for both the HUBzero and iRODS servers,
the necessary software is packaged as rpms. A useful component
of an rpm package is the post installation script that supports se-
quential command execution just like in a shell script. The task of
installing a few packages followed by some configuration steps can
be automated by creating a new rpm package that includes these
packages as dependencies and performs the configuration actions
in its post installation script. A simple randomizer function can
be added to the script to generate random passwords for use in
conjunction with other configuration commands. However, there
are some configuration tasks that do not fit quite so nicely into this
cloud-init, UserData and post installation script paradigm. Some
of these issues stem from CloudFormation deployment essentially
being a sequential process (i.e. completing deployment and initial-
ization of an instance before moving on) that does not support
interleaving instance deployment and configurations. Other issues
result from lack of parameterization support for rpm installation;
in fact, rpms are intended for non-interactive installation. We de-
scribe both these shortcomings below in the context of GABBs
installation and our approach for getting around them. It should be
noted that modern configuration management tools such as Puppet
and Chef can be employed in conjunction with CloudFormation
to simplify some of these software installation and configuration
tasks; however it is our belief that these shortcomings would still
persist in those solutions. Figure 2 illustrates a simplified, partial
GABBs CloudFormation template and some of these workarounds.

5 GABBS PACKAGING ISSUES
5.1 Interleaved Deployment and Configuration
There are certain dependencies between the various EC2 instances
making up the GABBs installation. For example, the iRODS server
requires knowledge of the Apache Solr endpoint on the hub web-
server. This allows automatically captured file metadata to be in-
dexed in Solr in support of hub search for hub project files. Obvi-
ously, the hub webserver needs to be aware of the iRODS server’s
IP address or DNS to configure the FUSE mount and GABBs plugins.
While it is straightforward to reference the DNS or IP addresses
of EC2 resources in a CloudFormation template, this sets up a
dependency chain between an EC2 resource and a resource that
references its attributes. CloudFormation resolves such dependen-
cies by determining a sequential ordering for resource deployment;
a referenced resource is always deployed before the referrer. It is
obvious that our scenario here has a cyclic dependency between
the iRODS and hub webserver that CloudFormation prohibits. It
should also be obvious that these dependencies essentially occur
at the initialization/configuration step. Such issues could be alle-
viated by a two-step process where all the resources are deployed
first followed by an initialization step where all resources can be
configured with complete knowledge of attributes such as DNS and
IP address of all the deployed resources. Lacking such a feature in
CloudFormation, we are forced to seek alternate solutions for this
issue.

Since the iRODS server needs to be installed before it can be
configured to point to the hub’s Solr endpoint, it is forced to be
deployed and configured first by referencing its DNS in the hub
resource’s UserData. The hub’s UserData script uses the referenced

Cloud-enabling a Collaborative Research Platform: The GABBs Story PEARC17, July 09-13, 2017, New Orleans, LA, USA

iRODS server’s DNS to set up the FUSE mount. All that remains
then is to update the IRODS server configuration for hub Solr access.
Fortunately, iRODS provides a microservice that can be used to
execute commands (essentially, shell scripts) on the server. The
microservice also allows specifying arguments for the command.
Recall that iRODS microservices can be executed on-demand via
an iRODS rule. We exploit this capability by creating an iRODS
rule file (on the hub webserver) that executes this microservice to
modify the server configuration appropriately. The microservice
in effect executes a shell script installed on the iRODS server and
is provided the hub’s DNS as an argument. iRODS rules can be
executed on-demand using iRODS client commands that have been
installed on the hub webserver.

It should also be pointed out that CloudFormation by default
does not wait until all UserData and cloud-init steps for an instance
have been performed before moving on to create and configure
dependent resources. However, CloudFormation provides another
AWS resource, WaitConditions that can be used for precisely this
purpose. WaitConditions, just like EC2 resources, can be set to
either depend on or have other resources depend on them. We will
not describe how WaitConditions work in detail here; essentially,
they can be signaled from UserData on EC2 resources and are con-
sidered created only when such a signal is received. By placing
such signaling at the end of the UserData section, dependent re-
sources can be set to wait until an EC2 instance has been created
and initialized before being created themselves.

5.2 Shared Parameters
Some parameters are required during the configuration of multi-
ple EC2 resources in a template. For instance, the hub webserver
requires an iRODS username and password to set up the FUSE
mount. Any such users need to be configured and added on the
iRODS server first and shared with the hub webserver. Fortunately,
CloudFormation supports such template-wide parameters, but not
without some shortcomings. For one, while such parameters can
have default values, they need to be hardcoded and cannot be as-
signed using randomizer functions. Subsequently, the only option
to avoid using hardcoded values is to prompt the user for them.
Another downside of requiring template-wide parameters is that
configuration tasks using these parameters cannot be accomplished
in rpm post installation scripts. Instead, additional scripts need to
be created for such configuration tasks, installed via rpms on the
various EC2 instances and run in conjunction with these parameters
via UserData. Prompting for such internal configuration parameters
(such as the iRODS username and password) places an unneces-
sary burden on the user while also necessitating explanatory text
describing the parameter’s role.

6 CONCLUSIONS AND FUTUREWORK
As science gateways begin to find widespread use, their ease of
deployment can often affect their popularity and adoption. With
institutions increasingly turning to cloud computing resources and
data curation playing an increasing role in research projects, cloud-
enabling a general-purpose data management framework such as
GABBs is a natural progression. In this paper, we described our
ongoing experience deploying the various resources that comprise

GABBs onto the AWS cloud computing platform and some of the
quirks of the CloudFormation paradigm that we had to work around.
Going forward, we will seek to better exploit the strengths of cloud
computing platforms. In particular, we hope to use autoscaling and
load balancers to scale up execution hosts and render servers in
response to variable resource loads, with the middleware automat-
ically detecting and exploiting these new resources as they get
deployed. We also plan to introduce additional flexibility in our
CloudFormation template, allowing advanced users to choose their
desired resource configurations.

ACKNOWLEDGMENTS
This workwas supported in part by the National Science Foundation
grant number 1261727. We would also like to thank David Benham
and Nicholas Kisseberth from the HUBzero team for providing us
with the baseline HUBzero AMI. The authors would also like to
thank the anonymous referees for their valuable comments and
helpful suggestions.

REFERENCES
[1] 2013. GABBs: NSF DIBBs: Geospatial Data Analysis Building Blocks. (2013).

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1261727
[2] L. Biehl and D. Landgrebe. 2002. MultiSpec - A Tool for Multispectral-

Hyperspectral Image Data Analysis. Computers and Geosciences 28, 10 (2002),
1153–159.

[3] L. Biehl, L. Zhao, C. X. Song, and C. G. Panza. 2017. Cyberinfrastructure for the
Collaborative Development of U2U Decision Support Tools. Journal of Climate
Risk Management 15 (2017), 90–108.

[4] T. Hertel and N. B. Villoria. 2014. GEOSHARE: Geospatial Open Source Hosting
of Agriculture, Resource and Environmental Data for Discovery and Decision
Making. (2014). https://mygeohub.org/resources/723

[5] R. Kalyanam, R. A. Campbell, S. P. Wilson, P. Meunier, L. Zhao, B. A. Hillery, and
C. Song. 2016. Integrating HUBzero and iRODS: Geospatial Data Management
for Collaborative Scientific Research. In The 2016 iRODS User Group Meeting.

[6] R. Kalyanam, L. Zhao, C. X. Song, Y. L. Wong, J. Lee, and N. B. Villoria. 2013. iData:
A Community Geospatial Data Sharing Environment to Support Data-driven
Science. In Proceedings of the Conference on Extreme Science and Engineering
Discovery Environment. ACM.

[7] G. Klimeck, M. McLennan, S.P. Brophy, G. B. Adams III, and M. S. Lundstrom.
2008. nanoHUB.org: Advancing Education and Research in Nanotechnology.
Computing in Science and Engineering 10, 5 (2008), 17–23.

[8] M. McLennan and R. Kennell. 2010. HUBzero: A Platform for Dissemination and
Collaboration in Computational Science and Engineering. Computing in Science
and Engineering 12, 2 (2010), 48–52.

[9] V. Merwade, W. Feng, L. Zhao, and C. Song. 2012. WaterHUB - A Resource for
Students and Educators for Learning Hydrology. In Proceedings of the XSEDE12
Conference.

[10] Arcot Rajasekar, Reagan Moore, Chien-yi Hou, Christopher A Lee, Richard Mar-
ciano, Antoine de Torcy, Michael Wan, Wayne Schroeder, Sheau-Yen Chen, Lucas
Gilbert, et al. 2010. iRODS Primer: integrated rule-oriented data system. Synthesis
Lectures on Information Concepts, Retrieval, and Services 2, 1 (2010), 1–143.

[11] L. Zhao, C. X. Song, and L. Biehl. 2016. MyGeoHub Science Gateway for Spatial
Data and a Model for Sustainability. In Gateways 2016.

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1261727
https://mygeohub.org/resources/723

PEARC17, July 09-13, 2017, New Orleans, LA, USA R. Kalyanam et al.

{
 Parameters: {
 gabbsUser: {
 Default: gabbs,
 Description: Username for iRODS connection,
 Type: String,
 MinLength: 1,
 MaxLength: 41,
 AllowedPattern : [a-zA-Z0-9]*
 },
 gabbsPasswd: {
 NoEcho: true,
 ...}},

Resources: {
 irodsWaitHandle: {
 Type : AWS::CloudFormation::WaitConditionHandle,
 },
 irodsWaitCondition : {
 Type : AWS::CloudFormation::WaitCondition,
 DependsOn : IRODS,
 Properties : {
 Handle : { Ref : irodsWaitHandle },
 Timeout : 600
 }
 },
HUBZERO: {
 Type: AWS::EC2::Instance,
 Properties: {
 ImageId: <ami-hubzero>,
 InstanceType: <instance-type>,
 AvailabilityZone: <zone>,
 KeyName: <key-name>,
 SecurityGroups: [gabbsSG],

 UserData : {
 #!/bin/bash

WAITCONDITIONDATA=
 {Fn::GetAtt:
[irodsWaitCondition,Data]}

 /opt/aws/bin/cfn-init -v
 --stack { Ref : AWS::StackName },
 --resource HUBZERO,
 --region { Ref : AWS::Region }

 yum -y install irods-client

 /tmp/update-irods-connection..sh
 {Fn::GetAtt: [IRODS,PublicDnsName]}
 {Ref: gabbsUser}

 MYDNS=
 $(curl <AWS instance metadata query url>)
 /tmp/run-irods-rule-new.sh $MYDNS
 {Ref: gabbsPasswd}
 },

 Metadata: {
 AWS::CloudFormation::Init: {
 config: {
 packages: {
 rpm: {
 repo:<gabbs-repo-url>}}}},

 IRODS: {
 Type: AWS::EC2::Instance,
 Properties: {
 ImageId: <ami-centos>,
 ...
 UserData : {
 #!/bin/bash

 /opt/aws/bin/cfn-init -v
 --stack { Ref : AWS::StackName },
 --resource IRODS,
 --region { Ref : AWS::Region }

 yum -y install irods-server

 /tmp/add-irods-user.sh
 {Ref: gabbsUser} {Ref: gabbsPasswd}

 curl -T /tmp/a {Ref : irodsWaitHandle}

 },

 Metadata: {
 AWS::CloudFormation::Init: {
 config: {

 files: {
 /tmp/a: {
 content: {
 <wait-condition-data>
 }
 }}}}}}}

global parameters

required properties

implicit dependency

cloud-init

shared parameter use

install repo entry
during cloud-init

resource dependency

signal wait condition

create file during
cloud-init

Figure 2: Partial AWS CloudFormation Template

	Abstract
	1 Introduction
	2 The GABBs Project
	2.1 HUBzero Cyberinfrastructure Framework
	2.2 GABBs Capabilities
	2.3 GABBs Components
	2.4 GABBs System Design

	3 Installing GABBs
	3.1 iRODS and GeoServer
	3.2 GABBs CMS and iRODS FUSE mount
	3.3 MultiSpec and GeoBuilder Tools
	3.4 Visualization Server

	4 Packaging GABBs
	4.1 Why Amazon Web Services?
	4.2 CloudFormation for GABBs

	5 GABBs Packaging Issues
	5.1 Interleaved Deployment and Configuration
	5.2 Shared Parameters

	6 Conclusions and Future Work
	Acknowledgments
	References

