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ABSTRACT 

Droughts are prolonged abnormalities of moisture deficits that vary widely 
across temporal and spatial scales. Many hydrometeorologic variables are used to 
monitor the status of a drought. However, because of the dependence structure 
between all affecting variables under various temporal windows, an integrated spatio- 
temporal analysis of droughts cannot be easily achieved. In this study, a copula-based 
drought analysis was performed by using long-term monthly precipitation dataset for 
the upper Midwest United States. The spatio-temporal dependence relationships 
between various drought variables were investigated, and their joint probability 
distribution was constructed by combining drought marginals and the dependence 
structure. A copula-based joint deficit index (JDI) was adopted for an objective 
(probability-based) description of the overall drought status and compared to the 
Palmer drought severity index results. Results from the copula-based JDI provide 
information for drought identification, and further allow a month-by-month 
assessment for future drought recovery. 
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INTRODUCTION 

Drought has been a challenging topic in water resources management. It is 
perceived as one of the most expensive and least understood natural disasters. 
Drought impacts tend to be more severe in areas such as the mid-western United 
States, where agriculture is the major economic driver. Droughts are categorized 
based on their impacts and duration. For example, meteorological droughts consider 
deficits in precipitation, agricultural droughts primarily consider deficits in soil 
moisture, and hydrologic droughts respond to streamflow deficits (Dracup et al., 
1980). Though these different types of deficits are generally positively correlated and 
are likely responding to the same trigger, they exhibit diverse temporal and spatial 
scales. An integrated drought indicator, that covers multiple types of deficits over 
different temporal scales, is therefore difficult to develop owing to the complicated 
dependencies in the variables that are used to characterize droughts. 
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Given their somewhat nebulous nature, the status of droughts is often assessed 
by various indices that are derived from hydrometorologic variables. Palmer (1965) 
proposed a moisture index (Palmer Drought Severity Index, PDSI) based on water 
budget accounting using precipitation and temperature data. PDSI soon became a 
popular choice for drought assessment and is widely used even today (Dalezios et al., 
2000; Kim et al., 2003). Another popular index - Standardized Precipitation Index 
(SPI) was introduced by McKee et al. (1993). Based on a given window size, the 
rainfall depth is transformed to its corresponding cumulative probability, and then 
mapped onto the standard normal scale. The probabilistic nature of SPI allows it to be 
comparable among various locations and variables, and it can be further interpreted in 
terms of recurrence intervals (return periods). Nevertheless, to judge an overall 
drought status, different SPIs with multiple temporal scales (e.g. 3-, 6-, 9-, 12-month) 
need to be examined. 

Despite the availability of different drought indices, no single index is ideal for 
characterizing droughts. The drought status that is assessed from one indicator often 
does not correspond well with that obtained from another. Therefore, to successfully 
assess the various drought characteristics, information from various sources need to 
be examined simultaneously. This is currently successfully managed by the US 
Drought Monitor where the severity of a drought (D0 ~ D4) is determined based on 
various indicators (PDSI, CPC Soil Moisture, USGS weekly, Percent of normal, SPI, 
and VCI), and from human input as described by Svoboda et al. (2002). Nevertheless, 
though an Objective Blend of Drought Indicators (OBDI, a linear weighted average of 
several indicators) is adopted as a measure of the overall severity, the decision of final 
drought status relies heavily on the subjective judgment of many people, instead of 
invariant objective standards. Because of the subjective intervention in specification 
of drought status, a rigorous analysis of the physical and probabilistic characterization 
of droughts is challenging. 

There is a need to develop objective standards for analyzing records and 
specifying drought status based on multiple variables. So far, one of the major 
stumbling blocks to such an approach has been our inability to describe the 
complicated dependent relationships between various drought-related variables. To 
accomplish this goal, this study employed copulas to identify and construct the 
dependence structure of droughts. Building on the analysis, we propose a new copula- 
based drought indicator that enables the computation of a probability-based overall 
water deficit index from multiple drought-related quantities (or indices). By invoking 
copulas, we construct joint distributions of droughts so that marginal distributions of 
relevant variables and their dependence structures can be fully preserved. The joint 
distribution affords an objective description of the overall deficit, and assists the 
computation of probabilistic quantities such as return period and associated risk of a 
drought. 
 
COPULAS 

Over the last decade, copulas have emerged as a powerful approach in 
simplifying multivariate stochastic analysis. Sklar (1959) showed that for 
d-dimensional continuous random variables  with marginal cumulative 
distribution functions (CDFs) 

},...,{ 1 dXX
)( jXj xFu

j
= , dj ,...,1= , there exists one unique 
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d-copula  such that: 
dUUC ,...,1

 
),...,(),...,( 1,...,1,..., 11 dUUdXX uuCxxH

dd
=          ( 1 ) 

 
where uj is the jth marginal and  is the joint-CDF of . Copulas 

 can be regarded as a transformation of  from  to  
in which the marginal distributions are segregated from . Hence,  
becomes only relevant to the association between variables, and it gives a complete 
description of the entire dependence structure. This approach is available for all 
existing joint distributions, and it further provides a general method for constructing 
suitable joint distributions. Kao and Govindaraju (2007) showed that copulas allow 
for easier computation of probabilistic quantities such as means and standard 
deviations of rainfall excess. The detailed theoretical background and descriptions for 
the use of copulas can be found in Nelsen (2006). Specific properties that are central 
to the implementation of study are described below. 

dXXH ,...,1
},...,{ 1 dXX

dUUC ,...,1 dXXH ,...,1
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Choices of Copulas for Higher Dimensional Joint Distributions 

Previous studies have indicated that copulas perform well for bivariate problems, 
and in particular Archimedean copulas have been a popular choice. However, the 
direct extension of Archimedean copulas to higher orders (>2) is very limited because 
they impose severe restrictions on the pair-wise mutual dependencies that can be 
accommodated, and compatibility conditions are far more difficult to satisfy in higher 
dimensional problems (Kao and Govindaraju, 2008). Only few parametric copula 
families with general applicability such as meta-elliptical copulas are available at 
higher dimensions (Genest et al., 2007). Nevertheless, the computational burden 
associated with meta-elliptical copulas increases rapidly with increasing dimensions 
since explicit expressions exist only for the copula densities and not for the copulas 
themselves. The dimension of drought dependence structure is expected to be quite 
large to capture the temporal behavior, and consequently nonparametric empirical 
copulas are chosen in this study. 

Similar to the concept of plotting position formula used in univariate statistical 
analysis (e.g. Weibull formula), empirical copulas are rank-based empirical joint 
cumulative probability measures (Nelsen, 2006). For sample size n, the d-dimensional 
empirical copula  is: nC
 

( nanknknkC dn //,...,/,/ 21 ) =           ( 2 ) 
 
where a is the number of samples  with },...,{ 1 dxx )(11 1kxx ≤ , …, , and 

, …,  with 
)( dkdd xx ≤

)(1 1kx )( dkdx nkk d ≤≤ ,...,1 1  are the order statistics from the sample. 
Empirical copulas are mostly used for model verification and are treated as the 
observed (real) dependence structure. When a sufficiently large sample size is 
available, empirical copulas can be used to construct non-parametric joint empirical 
probability distributions, which tend to be more computationally efficient. This is a 
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desirable feature for drought analysis. 
 

Distribution Function of Copulas - KC 
For given d-variate sample marginals , a copula  

is the cumulative probability measure 
},...,{ 1 dxx uu ),...,( 1,...,1 dxxUU uuC

d

=≤≤ ],...,[ 11 dxdx uUuUP q. One can expect 
that there exist other sample marginals  with the same value of 
cumulative probability 

},...,{ 1 dyy uu
=),...,( 1,...,1 dyyUU uuC

d
q. If this cumulative probability q is 

treated as an indicator, i.e. events with same value q are assumed to cause similar 
impact (e.g. in drought analysis it can be defined as joint deficit status, a smaller q 
implying overall drier conditions), then it will be of interest to know what the 
probability of random event  with , or 

. In this context, the distribution function KC of copulas can be 

defined as the probability measure of the set 

},...,{ 1 dUU qUUC dUU d
=),...,( 1,...,1

qUUC dUU d
≤),...,( 1,...,1
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Salvadori and De Michele (2004) adopted KC for defining a secondary return period 
for bivariate Archimedean copulas. The most appealing feature of KC is that it can 
help project multivariate information onto a single axis. Though an analytical 
expression of KC might not exist for non-Archimedean copulas, it can be numerically 
constructed from Monte Carlo simulations, and then the empirical distribution 
function KC may be constructed as (example shown in Kao and Govindaraju, 2008): 

 
( ) nbnlK

nC // =              ( 4 ) 
 

where b is the number of samples  with },...,{ 1 dxx ( ) nlnknkC dn ≤,...,1 . KC 
allows us to compute the probabilistic measure of the joint deficit status, which can 
be further translated to a joint drought index. 
 
DATA USED IN THIS STUDY 

To construct reliable multivariate statistical models, sufficiently long 
observations are desirable. In the proposed study, the Time Bias Corrected Divisional 
Dataset (TD-9640, http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp#) is 
adopted for the mid-western US (including states of IL, IN, IA, KS, MI, MN, MO, 
NE, ND, OH, SD, and WI). The data consists of monthly average temperature, 
precipitation, SPI and PDSI of each climate division within US from January 1895 to 
present (see Karl (1986) and Karl et al. (1986) for more details), and also provides an 
areal averaged value of the drought status. To investigate the droughts on a finer scale, 
the precipitation records over Indiana were obtained from the daily surface dataset 
(TD 3200) of cooperative stations (COOP) from National Climate Data Center 
(NCDC). After data processing (such as quality assuring with neighboring stations), a 
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total number of 73 stations with record lengths greater than 80 years were used in the 
analysis discussed ahead. Monthly precipitation was computed based on aggregated 
daily values. In cases where data was missing for the entire month (around 1.22% of 
the entire precipitation dataset), it was replaced by the historic mean of that specific 
month (assuming normal moisture status for that unknown month). We adopted 
copulas for conducting at-site analyses to capture temporal evolution of droughts, and 
used spatial interpolation for assessing the behavior over the regional scale. 

 
COPULA-BASED JOINT DROUGHT DEFICIT INDEX 

In this study, the standardized precipitation index (SPI) introduced by McKee et 
al. (1993) was adopted for developing a copula-based joint drought deficit index. 
There are several reasons for adopting SPI: (1) it can be applied to precipitation, 
streamflow, and other variables as well, (2) it does not incur model assumptions that 
are typical for other indices such as PDSI, and (3) it is a probability measure of 
cumulative precipitation by definition. Therefore, drought severity (dryness) is 
normalized in terms of probabilities that can be compared between various temporal 
scales, locations and variables. Since the current SPI approach cannot account for 
seasonal variability, an amendment proposed by Kao and Govindaraju (2009) was 
adopted in order to obtain a more statistically sound SPI. For a w-month SPI, the 
corresponding w-month marginal  can be expressed as wu

 
)SPI( wwu φ=               ( 5 ) 

 
in which φ  is the standard Gaussian CDF. Referring to the definition of drought 
categories used in US Drought Monitor (Svoboda et al., 2002), Table 1 shows the 
range of SPI values along with their probabilities of occurrence and corresponding 
drought conditions. 

 
Table 1. The categories used in US Drought Monitor along with the corresponding SPI values. 

SPI Values Prob. of Occurrence (%) Drought Condition Drought Monitor Category
-0.84 ~ -0.52 20 ~ 30 Abnormally dry D0 
-1.28 ~ -0.84 10 ~ 20 Drought - moderate D1 
-1.64 ~ -1.28 5 ~ 10 Drought - severe D2 
-2.05 ~ -1.64 2 ~ 5 Drought - extreme D3 

< -2.05 < 2 Drought - exceptional D4 
 
Droughts have varying durations and a single SPI cannot capture the overall 

status. By invoking copulas, the dependence structure of selected SPIs was 
constructed, and the overall deficit status was expressed as joint cumulative 
probability (a lower probability measure corresponds to overall dry conditions) thus 
allowing for a more comprehensive assessment of droughts. To capture the short- as 
well a the long-term droughts, window sizes from 1-, 2- to 12-month ( 1, 2, …, 12) 
were selected. Empirical copulas (Eq. 2) were adopted to construct the dependence 
structure for precipitation marginals . Since the record lengths are quite 
large (>1000 data points for most of stations and climate divisions), empirical copulas 
were assumed to provide reliable results. The choice of   in forming 

=w

},...,,{ 1221 uuu

,...,,{ 21 uu }12u
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high dimensional copulas increases the complexity of the dependence model. 
Nevertheless, it was needed because drought durations exhibit wide temporal 
variations, and only by encompassing various durations (e.g., from 1- to 12-month) 
the drought characteristics can be analyzed. An annual cycle also accounts for 
seasonal effects naturally. Moreover, this construct allows for a month-by-month 
assessment for future conditions, as will be shown later.  

After a copula has been constructed, it yields the cumulative probability 
. Clearly, when a drought occurs, most of the marginals 

 will be small and result in a small value of q. Therefore, the cumulative 
probability q can be viewed as the joint deficit status with a smaller q implying 
overall drought conditions while a higher q would imply overall wet conditions. We 
note that the joint deficit status q is linked to the given set of marginals and is only 
comparable to other q with the same set of marginals. For instance, q1 for 

 and q2 for  are not comparable. Therefore, a more 
general index derived from q is desirable. By assuming that events with the same 
value of q will have similar joint drought severity, it will be of interest to know the 
cumulative probability for events with joint deficit status less than or equal to a given 
threshold q (i.e., 

quUuUP =≤≤ ],...,[ 121211

wu

},...,,{ 1221 uuu },...,,{ 1121 uuu

]),...,([ 121,..., 121
qUUCP UU ≤ ). The distribution function of copulas KC 

(Eq. 3) provides this probability. Therefore, a joint deficit index (JDI) can be defined 
analogously to SPI: 

 
])),...,([())((JDI 121,...,

11
121

qUUCPqK UUC ≤== −− φφ       ( 6 ) 
 

where positive JDI ( 15.0 << CK ) implies overall wet conditions, negative JDI ( <0  
) indicates overall dry conditions, and JDI zero (5.0<CK 0=CK ) indicates normal 

conditions. In other words, JDI is based on the cumulative probability of joint deficit 
status q. An extreme drought will result in a small q, and the JDI will correspondingly 
yield a low probability. Since JDI is on an inverse normal scale (same as SPI), the 
classifications listed in Table 1 can be adopted for JDI as well. 

An illustration of the JDI using precipitation marginals of station Alpine 2 NE in 
Indiana (COOPID: 120132) is shown in Figure 1. JDI, , wSPI =w 1, 2, …, 12 and 
the corresponding 12-month precipitation values are presented for four select cases. 
In Fig. 1(a),  values observed in all window sizes for June 1988 report large 
precipitation deficits indicating a severe drought, which is also noted in the JDI. 
Nevertheless, only by invoking JDI can the overall deficit status be expressed as a 
probability-based index. Fig. 1(b) shows an opposite case, in which JDI and  
observed in all window sizes for August 1985 report sufficient precipitation. One can 
notice that JDI is slightly higher than all other  in this instance. Since JDI is 
based on the joint probability of all , it suggests that the joint behavior of a 
drought cannot be assessed by a simple weighted average of  due to the effect 
of dependence structure. Fig. 1(c) shows a case of emerging drought in February 1978, 
in which  is quite small due to the large precipitation deficit in February while 

wSPI

wSPI

wSPI

wSPI

wSPI

wSPI
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other  are above normal. This case is difficult to interpret since most of the 
indices do not capture droughts in a timely manner. The JDI reflects a drought 
condition based on the entire dependence structure. Fig. 1(d) shows a prolonged 
drought in Oct. 1988, in which  and  report sufficient precipitation in 
September and October while other  report precipitation deficit due to the 
preceding drought. Therefore, an important feature of JDI is that the overall deficit 
status is based on the dependence structure of deficit indices with various temporal 
windows. When the deficit indices are found to be uniformly low, the resulting joint 
drought index will be extremized due to its rareness. 

wSPI

1SPI 2SPI

wSPI

 
Figure 1. Illustration of JDI and , w = 1, 2,…, 12 of precipitation station Alpine 2 NE, 

Indiana (COOPID: 120132) for four selected cases. 
wSPI

 
COMPARISON BETWEEN VARIOUS DROUGHT INDICES 

To gain more insights into the proposed drought index, a comparison between 
JDI, SPI1, SPI3, SPI6, SPI9, SPI12 and PDSI was performed using the TD-9640 dataset 
for the Midwest. Since PDSI has been included in TD-9640, only JDI and modified 
SPIs were computed for each climate division. Spearman’s rank correlation 
coefficients between different indices were constructed and are shown in Table 2. 

 
Table 2. Average Spearman’s rank correlation coefficient between various drought indices of the 

entire Midwest 
 SPI1 SPI3 SPI6 SPI9 SPI12 JDI 

JDI 0.72  0.80  0.79 0.76  0.70   
PDSI 0.45  0.66  0.75  0.77  0.76  0.79  

 
The comparison indicates that the correlation between JDI and SPIs are 
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generally high (0.7 ~ 0.8). This is anticipated since JDI is built on SPIs with various 
window sizes. In other words, JDI represents the overall drought status with respect 
to different temporal scales. We then compare both JDI and SPI to the commonly 
used PDSI, which is based on a somewhat different water accounting approach. While 
the correlation between PDSI and SPIs increases with window sizes, it is of interest to 
note that the JDI shows good similarity to PDSI, especially for the eastern part of 
Midwestern US as illustrated in Figure 2. Though a more in-depth analysis should be 
conducted to see why these two different approaches can independently produce 
similar results, it indicates that JDI can effectively combine SPIs to form an overall 
drought index. The JDI approach can also be applied to other mixtures of indices, and 
is worthy for further investigation. 

 

 
Figure 2. Spearman’s rank correlation between JDI and PDSI of the Midwest 

 
USING JDI TO ASSESS THE POTENTIAL OF FUTURE DROUGHTS 

The adoption of high dimensional marginals facilitates a month-by-month future 
drought potential assessment since JDI is based on temporal dependence structure of 
deficits. Therefore, it will be of interest to know under given current conditions, what 
amount of precipitation is required in the following months to bring the joint deficit 
status to normal (JDI = 0 or 5.0=CK ). In other words, how much precipitation is 
required in a future time horizon to recover from an existing drought? This can be 
achieved via an iterative procedure described in Kao and Govindaraju (2009). A 
regional illustration of the required precipitation for July 1988 to achieve normality 
based on the observations made from August 1987 to June 1988 and the 
corresponding probability of exceedance is shown in Figure 3. As indicated in Fig. 3, 
a majority of Indiana would have needed over 150-mm of rain in July 1988. Based on 
historical July precipitation, this information can be further transformed into 
exceedance probability, and it suggests that the probability for recovering to normal 
conditions is small (less than 0.1 for most of the state). Such drought maps can be an 
effective way of relaying drought information, as most of the current indices are not 
amenable to statistical interpretation and are artificially converted into drought 
severity levels. 
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Figure 3. Illustration of (a) left: JDI for June 1988, (b) center: required precipitation for July 1988 

to achieve normal status (  or JDI = 0), and (c) right: the corresponding excess 
probability of Indiana based on the observations made from Aug 1987 to June 1988 

5.0=CK

 
CONCLUSIONS 

The complex relationships between drought-related variables have hindered 
characterization of overall drought status in the past. However, copulas provide a 
promising method for characterizing the complicated dependence structure by using a 
modified SI based on observed rainfall and streamflow data. The dependence 
structures of precipitation marginals with window sizes varying from 1- to 12-months 
were constructed via empirical copulas. The reliability of empirical copulas was 
founded on the large sample sizes adopted in this study. Study results can be 
summarized as follows: 
(1) A joint deficit index (JDI) was proposed in this study using the distribution 

function CK  of copulas. The JDI offers a probability-based drought index from 
a set of SPIs with various temporal window sizes. This is an improvement over 
conventional drought status indices that could be estimated through subjective 
judgments or by linear weighted SPIs. Besides providing objective description of 
the overall drought status, the JDI was shown to be capable of capturing both 
emerging and prolonged droughts in a timely manner. 

(2) Comparing to SPIs with various window sizes, the JDI is found to resemble 
behavior of PDSI especially for the eastern part of Midwestern US. Thus, JDI 
can effectively combine drought status with various temporal scales to form an 
overall deficit index. The similarity in the performance of two independently 
derived indices (PDSI and JDI) deserves further investigations. 

(3) Drought severity can be assessed through the proposed JDI approach. For 
instance, the required precipitation for achieving normal conditions (JDI = 0) can 
be estimated. The required rainfall depth along with its exceedance probability 
provides good interpretation of drought status and mitigation needs. 
The utilization of copulas in drought characterization was demonstrated in this 

study. Copulas can play an important role in drought analysis and perhaps in other 
hydrometeorological studies as they enable multidimensional stochastic analysis. 
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