IWSG 2022

GeoEDF: A Framework for Designing and Executing Reproducible Geospatial Research Workflows in Science Gateways

Rajesh Kalyanam, Jungha Woo, Lan Zhao, Carol X. Song, and Jack Smith*
Rosen Center for Advanced Computing, Purdue University
*Marshall University

GeoEDF Vision

Researchers spend up to 80% of their time "wrangling data"

Remote data repos, smart devices, streaming data

Framework

Geospatial Data

GeoEDF

Composer

Pipeline

Data

Geospatial

(GUI & API)

Reusable Data Connectors

Pluggable Data Processors

Integrated Active Learning

Resource Interoperability Interfaces

Cyberinfrastructure (Campus, XSEDE, HUBzero, Geospatial Tools, storage, Solr, ...)

Make Science FAIR

OUR DATA WORKFLOW - Final

- 1. Go to the science gateway
- 2. Define "my_workflow.ym/" (or use tool GUI if needed)
- 3. Ask GeoEDF to execute!
- 4. Data and workflow automatically published to science gateway

Remote data directly usable in code, seamless workflow

Complexity abstracted away

Reusable data connectors, processors, and workflows

Automatic provenance capture & data annotation => FAIR

GeoEDF Project

An Extensible Geospatial Data Framework Towards FAIR Science

To help data-driven sciences to be more **Findable, Accessible, Interoperable, Reusable**

funded by NSF CSSI program award #: 1835822, Oct 2018 - Sep 2023

GeoEDF Components

Reusable Data Connectors

Implement various data access protocols, enable data acquisition from popular repositories

Reusable Data Processors

Implement domain agnostic & domain specific geospatial processing operations

Plug-and-play Workflow Composer

Enable the composition of individual connectors & processors into complex workflows

GeoEDF

Enable researchers to conceive of geospatial data driven workflows as a sequence of data acquisition and processing steps that can be carried out using pre-existing or user contributed connectors and processors

GeoEDF Workflow in a nutshell

Example Hydrologic Workflow

Corresponding GeoEDF Workflow (YAML)

```
$1:
     NASAInput:
         url: https://e4ftl01.cr.usgs.gov/MOTAMCD15A3H.006/%{file}
         user: rkalyana
         password:
   Filter:
                                                                                   Filters enable spatial and
     file:
                                                                                   temporal filtering before data
        PathFilter:
                                                                                   acquisition
           pattern: '%{dtstring}/MCD15A3H.*.h09v07*.hdf'
                                                                                   This improves workflow
                                                                                   generality and efficiency
     dtstring:
        DateTimeFilter:
          pattern: '%Y.%m.%d'
          start: 07/16/2002
                                                   Data processor
$2:
     HDFEOSShapefileMask:
         hdffile: $1
         shapefile: /home/mygeohub/rkalyana/subs1_projected_171936.shp
         datasets: [Lai]
```

Connector, Processor Contribution Process

build
succeeded 15 days ago in 4m 15s

> Set up job

> Build geoedf/track-changes-docker-action@v11

> Set up Python 3.6

> Set up Go 1.13

> Install Dependencies

> Install Singularity

> Install hpccm

> Checkout Repo

> Track Changes

> Output Folders

> Loop and Build

def get_registry_containers(self): cli = get_client(quiet=True) conns = dict() query_res = cli.search("connectors") for (cont_uri,url) in query_res: cont_path = cont_uri.split(':')[0] plugin_name = cont_path.split('/')[1] if plugin_name not in conns: conns[plugin_name] = cont_uri procs = dict() query_res = cli.search("processors") for (cont_uri,url) in query_res: cont_path = cont_uri.split(':')[0] plugin_name = cont_path.split('/')[1] if plugin_name not in procs: procs[plugin_name] = cont_uri return (conns,procs)

(1) Contribute connectors/processors via GitHub pull requests

(2) GitHub action detects changes, builds Singularity container, pushes to registry server (3) Workflow engine queries registry for list of connector, processor containers

Gateway Integration

Deployment Solutions

- Publicly available gateway
- Deployed in Jupyter notebook environment as a Python library
- Job submission to Purdue's Halstead cluster

- > Self-contained Docker container
- Can use to build and test new connectors, processors
- > Run on your own machine

- Standalone deployment, in the works...
- > CILogon authentication
- Workflow execution in local minicondor

GeoEDF Demo

GEOEDF WORKFLOW EXECUTION IN THE MYGEOHUB GATEWAY

GeoEDF Applications – Water Quality

Synthesize hydrologic and water quality data from various federal agencies (USGS, EPA, etc.) for EPSCoR states for ease of visualization and analysis

➤ Workflow produces an interactive map combining water quality data from WQP and stream reach data for a given monitoring station

GeoEDF Applications – Agricultural Economics

Acquire and pre-process the necessary socio-economic, agricultural, and climate data for analyzing global-to-local food security and sustainability

Workflow acquires diverse U.N. FAOSTAT datasets, aggregates it for the study region, and converts from custom "HAR" format into widely-used csv

GeoEDF Applications – Invest

Family of tools (models) for quantifying importance of natural capital

➤ Workflow wraps the InVEST NDR (nutrient delivery ratio) model to enable efficient parameter sweeps via HPC execution

threshold_flow_accumulation = 1000

threshold_flow_accumulation = 1500

threshold_flow_accumulation = 2000

Summary

- ➤ Research reproducibility via declarative workflow conceptualization
- ➤ Broad applicability across domains that have workflows with a mix of data acquisition and processing steps
- ➤ Variety of integration options with CI and gateway platforms
- ➤ Ability to leverage various compute resources (local machine, Condor pool, HPC)

Thank You

- ➤ GeoEDF GitHub Repository: https://github.com/geoedf
- ➤ GeoEDF Documentation: https://geoedf.readthedocs.io
- ➤ Publication: https://dl.acm.org/doi/10.1145/3311790.3396631

Email:

Carol Song (cxsong@purdue.edu)