

Modeling the Appearance and Behavior of Urban Spaces

Daniel G. Aliaga

Department of Computer Science

http://www.cs.purdue.edu/cgvlab

Purdue University

New Urban Modeling Pipeline

- Synthesis using geometrical & behavioral modeling
 - [Vanegas et al. 2009, IEEE TVCG; work-in-submission]

Visualization of Simulated Urban Spaces

• Infer an urban layout

Images (aerial view) + Structure (streets, parcels)

from the values of a set of simulation variables at any given time step (from UrbanSim)

Designing Urban Spaces

- Motivation:
 - Geometrical modeling deals with creating 3D models but not modeling behavior
 - Behavorial modeling deals with creating simulations but not modeling geometry
 - So we "close the loop" (1) to reduce modeling time and (2) to create plausible urban models

Designing Urban Spaces: Example Results

• Auto completion

• Validation

Generated

Designing Urban Spaces: Example Results

- Large multi-city model
 - 200 km²; 50000 buildings; 3000 km of roads

Current and Future Work

- Incorporate additional non-geometric data
 - How does drought/water affect urban growth?
 - Can cities/states be designed to be more tolerant to drought?
 - How do we incorporate other climate-related factors?