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Current drought information is based on indices that do not capture the joint behaviors of hydrologic
variables. To address this limitation, the potential of copulas in characterizing droughts from multiple
variables is explored in this study. Starting from the standardized index (SI) algorithm, a modified index
accounting for seasonality is proposed for precipitation and streamflow marginals. Utilizing Indiana sta-
tions with long-term observations (a minimum of 80 years for precipitation and 50 years for streamflow),
the dependence structures of precipitation and streamflow marginals with various window sizes from 1-
to 12-months are constructed from empirical copulas. A joint deficit index (JDI) is defined by using the
distribution function of copulas. This index provides a probability-based description of the overall
drought status. Not only is the proposed JDI able to reflect both emerging and prolonged droughts in a
timely manner, it also allows a month-by-month drought assessment such that the required amount
of precipitation for achieving normal conditions in future can be computed. The use of JDI is generalizable
to other hydrologic variables as evidenced by similar drought severities gleaned from JDIs constructed
separately from precipitation and streamflow data. JDI further allows the construction of an inter-vari-
able drought index, where the entire dependence structure of precipitation and streamflow marginals
is preserved.

� 2009 Elsevier B.V. All rights reserved.
Introduction

Drought, as a prolonged status of water deficit, has been a chal-
lenging topic in water resources management. It is perceived as
one of the most expensive and least understood natural disasters.
In monetary terms, a typical drought costs American farmers and
businesses $6–8 billion each year (WGA, 2004), more than dam-
ages incurred from floods and hurricanes. The consequences tend
to be more severe in areas such as the mid-western part of the Uni-
ted States, where agriculture is the major economic driver. Unfor-
tunately, though there is a strong need to develop an algorithm for
characterizing and predicting droughts, it cannot be achieved eas-
ily either through physical or statistical analyses. The main obsta-
cles are identification of complex drought-causing mechanisms,
and lack of a precise (universal) scientific definition for droughts.

When a drought event occurs, moisture deficits are observed in
many hydrologic variables, such as precipitation, streamflow, soil
moisture, snow pack, ground water levels, and reservoir storage.
Focusing on various types of deficits, droughts are categorized dif-
ferently. For example, meteorological droughts are based on defi-
cits in precipitation, agricultural droughts on deficits in soil
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moisture, and hydrologic droughts on streamflow deficits (Dracup
et al., 1980). Though these different types of deficits tend to be pos-
itively correlated and are likely responding to the same trigger,
they exhibit diverse temporal and spatial scales. An overall drought
indicator, that encompasses multiple types of deficits and relevant
temporal scales, is therefore difficult to produce owing to the com-
plicated dependencies in the variables that are used to characterize
droughts.

Given their somewhat nebulous nature, the status of droughts is
often assessed by various indices that are derived from hydrologic
variables. Some early indices include: Munger’s Index (Munger,
1916), Blumenstock’s Index (Blumenstock, 1942), and Antecedent
Precipitation Index (McQuigg, 1954). Palmer (1965) proposed a
moisture index (Palmer Drought Severity Index, PDSI) based on
water budget accounting using precipitation and temperature
data. PDSI soon became a popular choice for drought assessment
and is widely used even today (Dalezios et al., 2000; Kim et al.,
2003). One reason for its success is that it provides an opportunity
to assess droughts using multiple sources of observations (precip-
itation and temperature). Nevertheless, PDSI has several limita-
tions (see Alley, 1984; Guttman, 1991, 1998; Guttman et al.,
1992). For instance, the soundness of proposed water balance
model is questioned, the temporal scale of PDSI is not clear, and
the values of PDSI possess neither a physical (such as required rain-
fall depth) nor statistical meaning (such as recurrence probability).
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Some other commonly used indices include: Crop Moisture
Index (CMI; Palmer, 1968), Surface Water Supply Index (SWSI;
Shafer and Dezman, 1982), Vegetation Condition Index (VCI;
Kogan, 1995), and Climate Prediction Center (CPC) Soil Moisture
Index (Huang et al., 1996). Another popular index – Standardized
Precipitation Index (SPI) – was introduced by McKee et al.
(1993). Based on a given window size, the rainfall depth is trans-
formed to its corresponding cumulative probability, and then
mapped onto the standard normal scale. The probabilistic nature
of SPI allows it to be comparable among various locations and
variables, and it can be further interpreted in terms of recur-
rence intervals (or return periods). While SPI is widely adopted
as a general tool for drought assessment (e.g. Cancelliere et al.,
2007), it can lead to confusion because inconsistent results
may emerge under different window sizes (unfortunately, there
is no representative window). Multiple SPIs with various tempo-
ral scales (e.g. 3-, 6-, 9-, 12-month) need to be examined to-
gether in order to form an overall judgment of a drought.
Besides, SPI cannot account for seasonal variability, i.e. a given
amount of precipitation should have different connotation in
the rainfall season when compared to the dry season.

Another approach for drought analysis follows Yevjevich
(1967), who applied statistical theory of runs for modeling drought
events. Based on a given demand (for instance, mean discharge),
the observed time series are divided into wet events (values great-
er than demand) and dry events (values less than demand). By ana-
lyzing properties of historical dry events (such as duration,
severity, and magnitude), frequency of a drought is estimated.
Many hydrologic drought analyses have followed this rationale
(such as Dracup et al., 1980; Zelenhasić and Salvai, 1987; Frick
et al., 1990; Kim et al., 2003; Abi-Zeid et al., 2004; Cancelliere
and Salas, 2004; Salas et al., 2005). However, the determination
of the threshold demand level relies on subjective assumptions,
and it is possible that a small change in this threshold will dramat-
ically alter the abstracted events (a long drought may be broken
into several short droughts). Heim (2002) provided an extensive
review of drought literature in the twentieth century.

The current consensus among researches is that no single ap-
proach is best for characterizing droughts. The drought status that
is assessed from one indicator often does not correspond well with
that obtained from a different indicator because of the complicated
physical connections between infiltration, evapotranspiration,
groundwater motion, base flow and direct runoff. In addition,
droughts result from cumulative effects of water shortages over
different periods of time. To successfully assess a drought, informa-
tion from various sources need to be examined simultaneously.
This is currently achieved by the US Drought Monitor where the
severity of a drought (D0–D4, see Table 1 for the probabilities of
occurrence and drought condition for each category drawn from
Svoboda et al. (2002)) is based on various indicators (PDSI, CPC Soil
Moisture, USGS weekly, Percent of normal, SPI, and VCI). Neverthe-
less, though an Objective Blend of Drought Indicators (OBDI, a lin-
ear weighted average of several indicators) is adopted as a
Table 1
The categories used in US Drought Monitor along with the corresponding SI values.

SI values Probabilities of
occurrence (%)

Drought condition Drought
monitor
category

�0.84 to �0.52 20–30 Abnormally dry D0
�1.28 to �0.84 10–20 Drought – moderate D1
�1.64 to �1.28 5–10 Drought – severe D2
�2.05 to �1.64 2–5 Drought – extreme D3
<�2.05 <2 Drought – exceptional D4
reference of the overall severity, the decision of final drought
status relies on subjective judgment of local personnel. With sub-
jective intervention in specification of drought status, a rigorous
analysis has not been feasible in physical and probabilistic charac-
terization of droughts, and a scientifically-defensible analysis of
droughts is still lacking. Since drought maps form the basis of sub-
sidies received by states, it is all the more important that they be
quantified in an objective fashion.

There is a need to develop objective standards for analyzing re-
cords and specifying drought status based on multiple variables.
This will be achieved through the construction of a joint indicator
that draws on information from multiple sources, and will there-
fore enable better estimation of drought return period, persistence
of droughts at a given severity, future risk assessment, and im-
proved identification of possible portents of droughts. So far, the
major stumbling block to such an approach has been our inability
to describe the complicated dependent relationships between var-
ious drought-related variables. To accomplish this goal, copulas are
employed in this study to facilitate the identification and construc-
tion of dependence structure of droughts, and to further our under-
standing into the statistical nature of droughts and our ability to
characterize them.

The flexibility offered by copulas for constructing joint distribu-
tions is evident from related studies on rainfall frequency analysis
(De Michele and Salvadori, 2003; Grimaldi and Serinaldi, 2006b;
Kao and Govindaraju, 2007a; Zhang and Singh, 2007; Kuhn et al.,
2007), flood frequency analysis (Favre et al., 2004; De Michele
et al., 2005; Shiau et al., 2006; Zhang and Singh, 2006; Renard
and Lang, 2007), trivariate frequency analysis (Grimaldi and Seri-
naldi, 2006a; Salvadori and De Michele, 2006; Genest et al.,
2007; Kao and Govindaraju, 2008), bivariate return periods (Salva-
dori and De Michele, 2004), groundwater parameters (Bárdossy,
2006), drought frequency analysis (Shiau, 2006), probabilistic
structure of storm surface runoff (Kao and Govindaraju, 2007b),
multivariate L-moment homogeneity test (Chebana and Ouarda,
2007), remote sensing data (Gebremichael and Krajewski, 2007),
tail dependence (Poulin et al., 2007), rainfall IDF curves (Singh
and Zhang, 2007), and sea storm analysis (De Michele et al.,
2007). A review of copulas in Genest and Favre (2007) indicated
that application of copulas in hydrology is still in its nascent stages,
and their full potential for analyzing hydrologic problems is yet to
be realized. The detailed theoretical background and descriptions
for the use of copulas can be found in Nelsen (2006) and Salvadori
et al. (2007).

We propose a new drought indicator using copulas that enables
us to compute a probability-based overall water deficit index from
multiple drought-related quantities (or indices). Precipitation and
streamflow data from Indiana are adopted here for purposes of
demonstration. By further invoking copulas, we construct joint dis-
tributions of droughts where marginal distributions of relevant
variables and their dependence structures can be fully preserved.
The joint distribution provides an objective description of the over-
all deficit status, and paves the path for computation of probabilis-
tic quantities such as return period and associated risk of a
drought.

The remainder of the paper is organized as follows. A brief
introduction to copulas, along with some properties that are cen-
tral to the proposed study are presented in ‘‘Mathematical formu-
lation”, along with the construction of drought marginals,
dependence structure, and copula-based joint deficit index. A
description of the selected precipitation and streamflow data from
Indiana is provided in ‘‘Data used in this study”. Results and appli-
cations of the proposed joint index, including comparisons be-
tween precipitation and streamflow deficits and drought
potential assessment are described in ‘‘Results and applications”,
and finally conclusions are presented in ‘‘Conclusions”.
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Fig. 1. Distribution function KC of Gumbel-Hougaard Archimedean copulas with
dependence parameter h = 2. KC provides the probability measure for the shaded
region where C(u, v) 6 q (KC(0.25) for region A, KC(0.5) for regions A + B, and KC(0.75)
for regions A + B + C).
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Mathematical formulation

Over the last decade, copulas have emerged as a powerful ap-
proach in simplifying multivariate stochastic analysis. Sklar
(1959) showed that for d-dimensional continuous random vari-
ables {X1, . . ., Xd} with marginal cumulative distribution functions
(CDFs) uj ¼ FXj

ðxjÞ, j = 1, . . ., d, there exists one unique d-copula
CU1 ;...;Ud

such that:

HX1 ;...;Xd
ðx1; . . . ; xdÞ ¼ CU1 ;...;Ud

ðu1; . . . ;udÞ ð1Þ

where uj is the jth marginal and HX1 ;...;Xd
is the joint-CDF of

{X1, . . ., Xd}.
Previous studies have indicated that copulas perform well for

bivariate problems, and in particular, several families of Archime-
dean copulas, including Frank, Clayton, and Gumbel-Hougaard,
have been popular choices for dependence models because of their
simplicity and generation properties (Nelson, 2006). However, the
direct extension of Archimedean copulas to higher orders (>2) is
very limited because they impose severe restrictions on the pair-
wise mutual dependencies that can be accommodated, and com-
patibility conditions are far more difficult to satisfy in higher
dimensional problems (Kao and Govindaraju, 2008).

Consequently, we employ empirical copulas that are rank-based
empirical measures of joint cumulative probability (Nelsen, 2006).
For sample size n, the d-dimensional empirical copula Cn is:

Cn
k1

n
;
k2

n
; . . . ;

kd

n

� �
¼ a

n
ð2Þ

where a is the number of samples {x1, . . ., xd} with
x1 � x1ðk1Þ; . . . ; xd � xdðkdÞ, and x1ðk1Þ; . . . ; xdðkdÞ with 1 6 k1, . . ., kd 6 n
are the rank statistics from the sample. When a sufficiently large
sample size is available, empirical copulas can be used to construct
non-parametric joint empirical probability distributions, which
tend to be more computationally efficient. This is a desirable feature
for drought analysis. The question of sampling deficiencies, espe-
cially for small data sets, may be accounted for using the methods
described in Rüeschendorf (1985) and Drouet-Mari and Kotz
(2001). As an example of parametric distribution, a brief description
of Student t-copulas is provided in the appendix.

Kendall distribution function – KC

For given d-variate sample marginals {u1x, . . ., udx}, a copula
CU1 ;...;Ud

ðu1x; . . . ;udxÞ is the cumulative probability measure
P[U1 6 u1x, . . ., Ud 6 udx] = q. There may exist other sample margin-
als {u1y, . . ., udy} with the same value of cumulative probability
CU1 ;...;Ud

ðu1y; . . . ;udyÞ ¼ q. If this cumulative probability q is treated
as an indicator, i.e. events with same value q are assumed to cause
similar impact (e.g. in drought analysis it can be defined as joint
deficit status, a smaller q implying overall drier conditions), then
it will be of interest to know what the probability is for a random
event {U1, . . ., Ud} with CU1 ;...;Ud

ðU1; . . . ;UdÞ ¼ q, or CU1 ;...;Ud
ðU1; . . . ;

UdÞ � q. In this context, Kendall distribution function KC (Nelsen
et al., 2003; Nelson, 2006) that is defined as the probability mea-
sure of the set fðU1; . . . ;UdÞ 2 ½0;1�dj CU1 ;...;Ud

ðU1; . . . ;UdÞ � qg is
useful:

KCðqÞ ¼ P½CU1 ;...;Ud
ðU1; . . . ;UdÞ � q� ð3Þ

Salvadori and De Michele (2004) adopted KC for defining a sec-
ondary return period for bivariate Archimedean copulas. The most
appealing feature of KC is that it can help project multivariate infor-
mation onto a single dimension. An illustration of KC for a bivariate
case is shown in Fig. 1 using Gumbel-Hougaard Archimedean cop-
ula with dependence parameter h = 2 (see Nelsen, 2006). In Fig. 1,
the curved lines represent level curves with C(u, v) = q, and KC
yields the probability measures of the shaded areas (areas with
copula value less than or equal to a given q). Though an analytical
expression of KC might not exist for non-Archimedean copulas, it
can be numerically constructed from Monte Carlo simulations,
and then the empirical Kendall distribution function KC may be
constructed as (example shown in Kao and Govindaraju, 2008):

KCn

l
n

� �
¼ b

n
ð4Þ

where b is the number of samples {x1, . . ., xd} with Cn(k1/n, . . ., kd/
n) 6 l/n. Of particular interest is that KC allows us to compute the
probabilistic measure of the joint deficit status, which can be fur-
ther translated to a joint drought index.

Construction of the copula-based joint drought deficit index

In this study, the standardized index (SI) introduced by McKee
et al. (1993) is adopted for statistical analyses of hydrologic vari-
ables (when applied to precipitation, it is the well-known SPI).
There are several reasons for adopting SI: (1) it can be applied to
precipitation, streamflow, and other variables; (2) it does not incur
model assumptions that are typical for other indices such as PDSI;
(3) it is a probability measure of cumulative precipitation by defi-
nition. Therefore, drought severity is scaled in terms of probabili-
ties that can be compared between various locations and among
variables. The procedure for constructing joint distributions in-
cludes: (1) identifying marginal distributions; (2) selecting suitable
dependence structure (copulas); and (3) forming joint distribu-
tions. In the following section, the marginals of joint deficit distri-
bution will be characterized using SI method. Since the current SI
approach cannot account for the seasonal variability, an amend-
ment is also proposed in order to obtain a more statistically sound
SI.

Marginal distribution
Taking rainfall as an example, let D(t) represent the rainfall

depth measured at time t (Dt = 1 month in this study) and the
aggregated values XwðtÞ ¼

Pt
i¼t�wþ1DðiÞ indicate the total precipita-

tion for a given w-month window with respect to t. By analyzing
the whole series of Xw for each w, the marginal CDF uw ¼ FXw ðxwÞ
is obtained by fitting a 2-parameter Gamma (G2) distribution as
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suggested by McKee et al. (1993). Then the index SIw is computed
by taking the inverse normal /�1(uw), i.e.

SIw ¼ /�1ðuwÞ ¼ /�1ðFXw ðxwÞÞ ð5Þ

Therefore, a positive SIw indicates wet conditions (0.5 < uw < 1), a
negative SIw indicates dry conditions (0 < uw < 0.5), and SIw = 0 indi-
cates normal conditions (median, uw = 0.5) for the w-month win-
dow. In other words, the precipitation aggregates Xw(t) are
transformed to dimensionless indices SIw and hence drought sever-
ities under various temporal windows w at time t can be compared
directly. This method can be extended to other types of hydrologic
time series as well. For streamflow data, let R(t) represent the
monthly discharge at time t, then the mean discharge within a given
w-month window can be defined as YwðtÞ ¼

Pt
i¼t�wþ1RðiÞ=w. By

identifying a suitable probability function for Yw, the SIw for stream-
flow can also be constructed from CDFs vw ¼ FYw ðywÞ. Referring to
the definition of drought categories used in US Drought Monitor
(Svoboda et al., 2002), Table 1 shows the range of SI values along
with their probabilities of occurrence and corresponding drought
conditions.

While this procedure seems intuitively reasonable, it has sev-
eral flaws. For instance, significant auto-correlation may exist in
the samples (note that different Xw may overlap each other) and
cause the fitting of probability distributions to be biased. For in-
stance, X3 of February, 1999 has 2 months in common with X3 of
January, 1999 (rainfall depths D of December 1998 and January
1999), but they are still merged together with all other X3s to de-
rive FX3 . This problem will become more severe for larger w, be-
cause for larger windows the samples will overlap more. The
other concern is of seasonal variability. Fig. 2a shows an example
of mean monthly precipitation along with the corresponding stan-
dard deviation for COOP station Alpine 2 NE (COOPID: 120132),
and Fig. 2b shows mean monthly discharge and standard deviation
for the nearby streamflow station Whitewater River (USGS Site
03275000). The precipitation data from station Alpine 2 NE has
been combined with data from two nearby stations Mauzy (COO-
PID: 125050) and Liberty 3 SSE (COOPID: 125435) to ensure con-
tinuous measurement from 1893 to 2006 (114 years), and the
station Whitewater River has discharge data recorded from 1929
to 2006 (78 years). For precipitation, February is the driest month
and May the wettest, while for streamflow April is the wettest
and September the driest. Similar observations were made for
other stations in Indiana as well. From Fig. 2, it can be seen that
strong seasonal patterns exist both in precipitation and stream-
flow. Therefore, a given amount of hydrologic quantity reflects dif-
ferent moisture deficit status depending on when it is observed
(e.g., 75-mm monthly rainfall in May is less than average while
the same amount is more than average in February). However, this
seasonal difference cannot be reflected in the conventional SI
approach.
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To resolve the above issues, one can further group Xw by its end-
ing month (month of D(t)) to form subsets Xmonth

w s, where
month = Jan, Feb, . . ., Dec. In other words, the series Xw(t) is subdi-
vided into 12 smaller series, i.e. Xmonth

w ðgÞ ¼ Xwð12ðg � 1Þþ
mÞ ¼ XwðtÞ, in which g = 1, 2, . . ., is the year index, m = 1 (Jan), 2
(Feb), . . ., 12 (Dec) is the month index, and the time index
t = 12(g � 1) + m. Therefore, XJan

1 represents January precipitation,
and XAug

6 represents the 6-month precipitation total from March
to August. In doing so, samples in each Xmonth

w set are collected
annually and will be non-overlapping when w 6 12 (note that Dt
is 1 month while Dg is 1 year). In other words, the degree of
auto-correlation among samples will be largely reduced. Besides,
samples within the same group Xmonth

w are subject to the same sea-
sonal effect (i.e. spanning for the same months of the year), and
hence the seasonal variation is accounted for in an appropriate
manner. This is conceptually similar to the approach used to gen-
erate weekly residuals in Kuhn et al. (2007). By fitting distributions
separately for each group (i.e., constructing uJan

w ¼ FXJan
w
ðxJan

w Þ,
uFeb

w ¼ FXFeb
w
ðxFeb

w Þ; . . . ; and uDec
w ¼ FXDec

w
ðxDec

w Þ;w ¼ 1;2; . . .Þ, the modi-

fied SImod
w can be computed similar to SIw by:

SImod
w ¼ /�1ðumonth

w Þ ¼ /�1ðFXmonth
w
ðxmonth

w ÞÞ ð6Þ

Similarly, this modified approach can be applied on streamflow data
as well, in which the variables Ymonth

w ðgÞ ¼ Ywðmþ 12ðg � 1ÞÞ ¼
YwðtÞ and vmonth

w ¼ FYmonth
w
ðymonth

w Þ are defined analogously.

Dependence structure
The SI values described above give a standardized moisture

abnormality measure within a w-month window at time t. In order
to assess the overall drought status, all abnormalities under vari-
ous w-month windows need to be examined together. Since
droughts are slowly evolving phenomena, strong temporal auto-
correlation among SIs is expected. Instead of using conventional
time series analysis methods (e.g. PDSI is an AR(1) model), copulas
were utilized in this study to model their temporal dependence
structure. In order to capture both short- and medium-term
droughts, window sizes from 1-, 2- to 12-month (w = 1, 2, . . ., 12)
are selected, i.e. the set {SI1, SI2, . . ., SI12} is of interest. Since the
seasonal variability has been corrected via the modified SI at the
marginal level as evidenced by Table 2, it is assumed that the
dependence structure of standardized indices fSImod

1 ; SImod
2 ; . . . ;

SImod
12 g will not change significantly with season.

The precipitation marginals umod
w and streamflow marginals

vmod
w for a given w-month window are given by the corresponding

/ðSImod
w Þ values. We note that umod

w and vmod
w are unions of umonth

w and
vmonth

w for each month. Marginals fumod
1 ;umod

2 ; . . . ;umod
12 g and

fvmod
1 ;vmod

2 ; . . . ;vmod
12 g with window sizes w from 1- to 12-month

with respect to the same ending time were constructed (e.g.,
umod

1 is the union of uJan
1 ;uFeb

1 ; . . . ;uDec
1 ). The choice of

fumod
1 ;umod

2 ; :::;umod
12 g and fvmod

1 ;vmod
2 ; . . . ;vmod

12 g in forming high
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Table 2
Summary of the observed frequencies of droughts detected by both conventional and modified 1-month SI from 73 precipitation and 36 streamflow stations in Indiana. Droughts
are defined as SI values less than �0.52 (including categories D0–D4).
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dimensional copulas increases the complexity of the dependence
model. Nevertheless, it is required because drought durations exhi-
bit wide temporal variations, and only by encompassing various
durations (from 1- to 12-month) can one represent droughts. An
annual cycle accounts for seasonal effects naturally. Moreover, this
construct allows for a month-by-month assessment for future con-
ditions, as will be shown later. Marginals longer than 12-month
(j > 12) are excluded from this study because the adopted samples
will start to overlap each other (samples no longer independent)
and cause the fitting result to be biased even after applying the
modified SI procedure presented in the previous section.
Definition of joint deficit index
Since droughts do not have fixed temporal scales, multiple SIs

with various window sizes need to be examined together to judge
the overall status of a drought. Therefore, we propose to adopt the
joint cumulative probability of SIs as the overall drought indicator
in this study.

For temporal windows of interest (say fumod
1 ;umod

2 ; . . . ;umod
12 g

covering 1–12-month), a copula gives cumulative probability
P½U1 � umod

1 ; . . . ;U12 � umod
12 � ¼ q. Clearly, when a drought occurs,

most of the marginals umod
w will be small and result in a small value

of q. On the other hand, when a drought is not serious, moisture
deficits should be higher and result in a higher q. The cumulative
probability q can be viewed as the joint deficit status of given mar-
ginal sets (e.g., fumod

1 ;umod
2 ; . . . ;umod

12 g), where a smaller q implies
overall drought conditions while a larger q implies overall wet con-
ditions. This joint deficit status q is determined through probabilis-
tic considerations, and offers an objective measure of droughts.
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ulas CU1 ;...;U12 ðumod

1 ; . . . ;umod
12 Þ of precipitation station Alpine 2 NE (COOPID: 120132).
We note that the joint deficit status q is linked to the given set
of marginals and is only comparable to other q with the same set of
marginals. For instance, q1 for fumod

1 ;umod
2 ; . . . ;umod

12 g and q2 for
fumod

1 ;umod
2 ; . . . ;umod

11 g are not comparable. Therefore, a more gen-
eral index based on q is desirable. By assuming that events with
the same value q will have similar joint drought severity, it will
be of interest to know the cumulative probability for events with
joint deficit status less than or equal to a given threshold q (i.e.,
P½CU1 ;...;U12 ðU1; . . . ;U12Þ � q�). The Kendall distribution function KC

provides this probability. An example of KC(t) using precipitation
marginals fumod

1 ;umod
2 ; . . . ;umod

12 g of station Alpine 2 NE is shown
in Fig. 3. In this example, the probability of events with copula va-
lue q less than 0.3 is about 0.8. Following the discussion in ‘‘Mar-
ginal distributions for modified monthly SI values”, a joint deficit
index (JDI) can be defined analogously to SI:

JDI ¼ /�1ðKCðqÞÞ ¼ /�1ðP½CU1 ;...;U12 ðU1; . . . ;U12Þ � q�Þ ð7Þ

where positive JDI (0.5 < KC < 1) implies overall wet conditions, neg-
ative JDI (0 < KC < 0.5) indicates overall dry conditions, and JDI zero
(KC = 0) indicates normal conditions. In other words, JDI is based on
the cumulative probability of joint deficit status q. A very extreme
drought will result in a small q, and the JDI will correspondingly
yield a low probability.

Data used in this study

The focus of this study is on the State of Indiana. In order to con-
struct reliable multivariate statistical models of joint drought def-
icit distributions, large amounts of sufficiently long historic
observations are desirable. For instance, a 50-year minimum
recording length is adopted by National Weather Service (NWS)
in performing at-site rainfall frequency analysis (Bonnin et al.,
2004). This 50-year standard was also chosen in this study as a
minimum requirement. When longer records are available for
some variables, this standard can be further raised to increase reli-
ability. Considering the nature of droughts, stations were consid-
ered acceptable if monthly precipitation data had an 80-year
minimum recording length, and monthly streamflow data con-
tained 50-years minimum recording length.

Precipitation records were obtained from the daily surface data-
set (TD 3200) of cooperative stations (COOP) from National Climate
Data Center (NCDC). After data processing (such as combination of
nearby stations), a total number of 73 stations with record lengths
greater than 80 years were obtained. Monthly precipitation was
computed based on aggregated daily values. In cases where data
were missing for the entire month (around 1.22% of the entire pre-
cipitation dataset), they were replaced by the historic mean of that
specific month (i.e., assuming moisture status of that unknown
month to be neither wet nor dry).

For streamflow, the United States Geological Survey (USGS) dai-
ly streamflow dataset was utilized in the present study. Unlike pre-
cipitation, streamflow data are subjected to human interference,
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and therefore data contain both natural and regulated flows. This
practice does not cause serious problems in flood frequency analy-
sis (flows are much larger), but it is expected to result in more er-
rors for low flow (drought) conditions. Therefore, only unregulated
stations were included to ensure an unbiased analysis. After
imposing the 50-year record length requirement, a total of 36
unregulated stations were available for the study area. Daily mean
flow data were collected and processed to form monthly mean dis-
charges. The missing values were interpolated in the same way as
precipitation and 1.38% of the data were replaced by historic mean
monthly streamflows. We adopted copulas for conducting primar-
ily at-site analyses to capture temporal evolution of droughts, and
use spatial interpolation for assessing the behavior over the entire
state.
Results and applications

Role of seasonality

We first demonstrate the role of seasonality by examining the
1954 precipitation data for station Alpine 2 NE as an example. In
Fig. 4a, monthly precipitation (i.e., both X1s and Xmonth

1 s) of year-
1954 are shown. It can be seen that similar amounts of precipita-
tion (around 50-mm) are observed in February, March, and May,
hence values of conventional SI1 are close to each other for these
3 months as shown in Fig. 4b. Nevertheless, since it is wettest in
May and driest in February (shown in Fig. 2), a 50-mm rainfall
should not have the same implication in May as in February. With
the modified approach, this seasonal variability is accounted for as
evidenced by the higher SImod

1 of February and lower SImod
1 of May in

Fig. 4c.
A further examination, using the entire precipitation and

streamflow datasets of Indiana, is shown in Table 2. The numbers
of 1-month droughts detected by SI1 and SImod

1 when their values
are less than �0.52 (i.e., including all drought categories D0�D4)
are computed and transformed to observed frequencies. The ranks
(low to high) of both average monthly rainfall depth and mean
streamflow discharge are also included. Columns of the driest
and wettest months are marked in gray for illustration. For the
conventional SI approach, the highest observed frequencies are
found in the driest months (48.6% in February months for precipi-
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Fig. 4. Comparison between conventional and modified 1-month SI using precip-
itation station Alpine 2 NE (COOPID: 120132): (a) upper panel: monthly precip-
itation of year 1954 (Xmonth

1 series); (b) middle panel: conventional SI1 of each
month; (c) lower panel: modified SImod

1 of each month.
tation droughts, and 79.4% in September months for streamflow
droughts), while the lowest frequencies were found in the wettest
months (only 13.3% in May months for precipitation droughts and
2.6% in March months for streamflow droughts). As for the modi-
fied approach, the observed drought frequencies were found to
be around 30% corresponding to the drought definition given in Ta-
ble 1. This result is expected since SI1 is normalized by all 1-month
data without considering the seasonal variability. In order words,
the moisture abnormalities reported by modified SI corresponds
to the monthly mean while the conventional SI to the overall
mean. Since most human and agricultural activities have adapted
to the local seasonal pattern, a suitable drought index should aim
at reporting abnormalities in specific seasons or months instead
of reflecting the known seasonal behavior. For locations with larger
seasonal variability than Indiana, the performance of the conven-
tional SI as demonstrated in Table 2 is likely to be more dramatic.
In addition, the difference between SIw and SImod

w is largest for
w = 1, and least for w = 12 when seasonal variability is no longer
a controlling factor.
Marginal distributions for modified monthly SI values

While the G2 distribution was suggested by McKee et al. (1993)
for computing conventional SPI, it may not be suitable for the mod-
ified SI for rainfall or streamflow. In order to test the appropriate-
ness of G2, Kolmogorov–Smirnov (KS) and Cramer-von Mises (CM)
tests were applied for the goodness of fit at the 5% significance le-
vel in this study, with model parameters estimated by maximum
likelihood (ML) method (see Rao and Hamed (2000) and Laio
(2004) for mathematical details). For the 73 selected precipitation
stations in Indiana, G2 was fitted to both conventional (Xw) and
modified (Xmonth

w ) sets of cumulated precipitation with window
sizes ranging from 1- to 12-month (w = 1, 2, . . ., 12), and the test
results are reported in Table 3. It was found that 142 and 99 out
of 876 cases (73 stations with 12 window sizes) failed to pass KS
and CM tests, respectively, with conventional definitions of SI.
With the modified SI definition, only 122 and 117 out of 10,512
cases (73 stations, 12 window sizes, and 12 ending months) failed
to pass these two tests, respectively. Therefore, G2 was deemed to
be suitable for the proposed approach in computing modified SI of
precipitation. For streamflow, a total of 432 cases (36 stations with
12 window sizes) were tested for G2 by conventional approach and
5184 cases (36 stations, 12 window sizes, and 12 ending months)
by the modified approach. Note that the modified SI has 12 times
more cases to account for seasonality. It was found that G2 was
not suitable (a very large percentage of failing cases was suggested
by CM test), and instead the generalized extreme value (GEV) dis-
tribution was tested for streamflows. As shown in Table 3, GEV
provides appropriate fits for most of the cases in computing mod-
ified SI of streamflow, and was thus adopted for further analysis.
Table 3
Summary of goodness-of-fit tests on SI. Numbers of cases that are rejected by
Kolmogorov–Smirnov (KS) and Cramer-von Mises (CM) tests at the 5% significant
level from a total of 73 precipitation stations and 36 streamflow stations are reported.
The window sizes used in both SI and modified SI are from 1- to 12-month.

Precipitation Streamflow

G2 G2 GEV

KS test
SIw 142/876 287/432 163/432

SImod
w

122/10,512 190/5184 11/5184

CM test
SIw 99/876 415/432 144/432

SImod
w

117/10,512 4161/5184 0/5184
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Though the modified SI approach helps account for seasonality, it
requires a longer recording length in order to yield reliable mar-
ginal distributions.

Dependence structure specification

For an assessment of the nature of dependence, Spearman’s
rank correlation coefficient ri,j between each pair of
fumod

1 ; umod
2 ; . . . ;umod

12 g from precipitation station Alpine 2 NE and
fvmod

1 ;vmod
2 ; . . . ;vmod

12 g from streamflow station Whitewater River
were computed and reported in Table 4 as an example. While ri,j

in Table 4 were computed using marginals umod
w and vmod

w , they
can be further interpreted as the rank correlation coefficient be-
tween SImod

w with various window sizes since SImod
w are monotoni-

cally increasing transformation of marginals (i.e., ranks remain
the same).

For precipitation marginals (upper triangle in Table 4), it can be
seen that short-term marginal umod

1 has a high correlation of 0.71
with umod

2 , and the correlation decays quite fast with increasing
window size j (when j P 6, r1,j between umod

1 and umod
j are less than

0.4). For a long-term marginal umod
12 , it has a high correlation with

umod
j for j P 4, and the correlation becomes less for short-term win-

dows. While umod
1 represents the past month precipitation status

(important for identifying emerging droughts) and umod
12 represents

the past year precipitation status (important for identifying pro-
longed droughts), they are not well-correlated to each other and
hence none of them can be overlooked. Table 4 also shows that
no representative window exists, i.e. no single umod

i can solely rep-
resent others (highly dependent on every other umod

j ), and hence
every single umod

i can only reflect a partial view of a precipitation
drought. A similar observation can be made from streamflow mar-
ginals (lower triangle in Table 4). Comparing to the corresponding
precipitation marginals, streamflow has a higher level of temporal
correlation as expected. Nevertheless, a single window size cannot
be used to represent the entire hydrologic drought status.

The joint deficit index (JDI)

Since the JDI is on an inverse normal scale (same as SI), the clas-
sifications listed in Table 1 can be adopted for JDI as well. An illus-
tration of JDI is shown in Fig. 5 using precipitation marginals of
Table 4
Spearman’s rank correlation coefficient rij between precipitation marginals umod

i and umod
j (u

station Alpine 2 NE and streamflow station Whitewater River (note that rij = rji).
station Alpine 2 NE. JDI, SImod
w , w = 1, 2, . . ., 12 and the correspond-

ing 12-month precipitation are presented for four select cases. In
Fig. 5a, SImod

w values observed in all window sizes for June 1988 re-
port serious precipitation deficits indicating a severe drought,
which is also suggested by the JDI. Fig. 5b shows an opposite case,
in which JDI and SImod

w observed in all window sizes for August
1985 report sufficient precipitation. One can notice that JDI is
slightly higher than all other SImod

w in this instance. Since JDI is
based on the joint probability of all SImod

w , it suggests that the joint
behavior of drought cannot be assessed by a simple weighted aver-
age of SImod

w due to the effect of dependence structure. Fig. 5c shows
a case of emerging drought in February 1978, in which SImod

1 is
quite small due to the serious precipitation deficit in February
while other SImod

w are above normal. This case would be confusing
for interpretation since most of the indices do not capture droughts
in a timely manner. The JDI reflects a drought condition based on
the entire dependence structure. Fig. 5d shows a prolonged
drought in October 1988, in which SImod

1 and SImod
2 report sufficient

precipitation in September and October while other SImod
w report

precipitation deficit due to the preceding serious drought (shown
in Fig. 5a). This is another instance where the JDI can provide the
probability of joint deficit status objectively and reflect drought
conditions better than SI.

A regional illustration is shown in Fig. 6, where a comparison
between SImod

1 , SImod
12 , and the proposed JDI is performed using Indi-

ana precipitation data for June and July, 1988, which correspond to
one of the most serious droughts recorded in history. For June
1988, hardly any precipitation was observed and hence SImod

1 indi-
cates extremely dry conditions. However, SImod

12 does not show a
similar severity because its long-term memory delays the response
for an emerging drought. For the following month, approximately
normal precipitation was observed but it did not relieve the accu-
mulated deficit as suggested by the SImod

12 . However, SImod
1 falsely

indicates that the deficit status has come back to normal because
it lacks longer memory. As for the proposed JDI, it is found to better
reflect the emerging drought (in June), and also has temporal
memory for accumulated deficit (in July).

The most important feature of JDI is that the overall deficit sta-
tus is based on the dependence structure of deficit indices with
various temporal windows. When the deficit indices are found to
be uniformly low, the resulting joint drought index will be
pper triangle) and streamflow marginals mmod
i and mmod

j (lower triangle) of precipitation
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w , w = 1, 2, . . ., 12 of precipitation station Alpine 2 NE (COOPID: 120132) for four selected cases.

Fig. 6. Regional illustration of SImod
1 (left), SImod

12 (middle), and JDI (right) of precipitation of Indiana for June and July 1988.
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extremized due to its rareness. Though the examples shown in
Figs. 5 and 6 are based on precipitation deficit, JDI can be con-
structed using other hydrologic quantities as well. A comparison
between precipitation and streamflow droughts will be performed
using JDI in the following section.
Comparison between precipitation and streamflow deficits using JDI

Though droughts are fundamentally triggered by insufficient
precipitation, the evolution of a drought from precipitation to
streamflow is not instantaneous and is controlled by complex
physical mechanisms. To study the correlation between these
two different types of deficits, a general method is required where
the analyses can be performed in a systematic manner. The pro-
posed copula approach serves this need because both SI and JDI
are not limited to precipitation data alone and are applicable to
other hydrologic variables.

Similar to Table 4, the cross correlation between precipitation
marginals fumod

i ji ¼ 1;2; . . . ;12g of station Alpine 2 NE and stream-
flow marginals fvmod

j jj ¼ 1;2; . . . ;12g of nearby streamflow station
Whitewater River are examined using Spearman’s ri,j and reported
in Table 5. It is observed that the correlation ri,i (i.e.,
r1,1, . . ., r12,12, both marginals have the same window size) in-
creases with increasing window sizes (from r1,1 = 0.62 to
r12,12 = 0.78). This is expected because as the window size in-
creases, the time lag from precipitation to streamflow is absorbed
by the time window. As for ri,1 (1-month streamflow vmod

1 to vari-
ous durations of precipitation umod

i ), the correlation remains at a
high level between 0.6 and 0.7. This likely reflects the temporal de-
lay from precipitation to streamflow (mechanisms such as base-
flow), and hence supports that streamflow deficits have longer
temporal memory than precipitation deficits. On the other hand,
r1,j (1-month precipitation umod

1 to various lengths of streamflow
vmod

j ) decays quickly as expected, since past streamflows have little
influence on future precipitation.

Following the procedures developed in ‘‘Definition of joint def-
icit index”, JDI was computed both for precipitation and stream-
flow marginals. Furthermore, JDI was constructed for the mixed
marginals fumod

1 ; . . . ;umod
12 ;vmod

1 ; . . . ;vmod
12 g as well to represent the

inter-variable drought information based on the entire dependence
structure (both Tables 4 and 5). An example is illustrated in Fig. 7
using precipitation station Alpine 2 NE and streamflow station
Whitewater River. It is intriguing to see that both JDIs of precipita-
tion and streamflow are correlated to each other in most of the re-
gions (Spearman’s r = 0.73 between these two series). Since the
developments of these two series are independent of each other,
it indicates that similar drought information can be obtained from
these two hydrologic variables. This reinforces the claim that the
Table 5
Spearman’s rank correlation coefficient rij between precipitation marginals umod

i and strea

umod
1 umod

2 umod
3 umod

4 umod
5 umod

6

mmod
1

0.62 0.70 0.70 0.69 0.68 0.66

mmod
2

0.42 0.68 0.73 0.75 0.74 0.72

mmod
3

0.32 0.54 0.71 0.76 0.77 0.76

mmod
4

0.25 0.43 0.58 0.73 0.78 0.78

mmod
5

0.21 0.36 0.49 0.63 0.75 0.78

mmod
6

0.20 0.33 0.43 0.55 0.66 0.76

mmod
7

0.17 0.30 0.39 0.49 0.59 0.69

mmod
8

0.18 0.28 0.37 0.46 0.54 0.63

mmod
9

0.17 0.27 0.34 0.43 0.51 0.58

mmod
10

0.16 0.26 0.33 0.41 0.48 0.55

mmod
11

0.15 0.24 0.32 0.39 0.46 0.52

mmod
12

0.15 0.23 0.31 0.38 0.44 0.50
proposed JDI is a general algorithm, and therefore it is a potential
approach for analyzing other hydrologic variables as long as the
proper marginal distributions and dependence structure can be
modeled. It can also be seen from Fig. 7 that the mixed JDI provides
intermediate drought severity that is based on the joint distribu-
tion of both precipitation and streamflow data at various temporal
durations. The regional comparison between precipitation and
streamflow JDI is performed in Fig. 8 as an example using Indiana
data for April 2001. The general trends of these two JDIs are similar
for the illustrated drought event, again demonstrating the viability
of JDI for studying time scales of various droughts, and their inter-
dependencies.
Potential of future droughts

As mentioned earlier, the adoption of high dimensional margin-
als fumod

1 ;umod
2 ; . . . ; umod

12 g facilitates a month-by-month future
drought potential assessment since JDI is based on temporal
dependence structure of deficits. Similar to SI, positive JDI
(KC > 0.5) can be interpreted as a joint ‘‘wetness” index, negative
JDI (KC < 0.5) as the joint dry status, and JDI = 0 (KC = 0.5) represents
joint normal status. Therefore, it will be of interest to know under
current conditions (e.g. precipitation observations), what amount
of precipitation is required in the following months to bring the
joint deficit status to normal (JDI = 0 or KC = 0.5). In other words,
how much precipitation is required in a future time horizon to re-
cover from an existing drought?

Let Po
w denote the observed monthly precipitation for the past w

months, and Pf
n represent the future n-month monthly precipita-

tion to be assessed. Since the maximum temporal length JDI cov-
ered is 12 months, in order to assess Pf

1 one needs to have the
past 11-month observations Po

1; P
o
2; . . . ; Po

11. Nevertheless, because
Pf

1 is unknown, the precipitation marginals umonth
i cannot be deter-

mined directly (e.g., umonth
1 is controlled by Pf

1, and umonth
2 is con-

trolled by the sum (Pf
1 þ Po

1)). In order to solve for the value of Pf
1

that results in JDI = 0, one may follow the procedure listed below:

1. Assign an initial guess of Pf
1.

2. Compute precipitation marginals umonth
1 by Pf

1, umonth
2 by

(Pf
1 þ Po

1), . . ., and umonth
12 by (Pf

1 þ
P11

i¼1Po
i ). The month when Pf

1

occurs is the ending month used in the modified SI procedure.
3. Compute CU1 ;...;U12 ðumonth

1 ; . . . ; umonth
12 Þ, and the corresponding KC

values.
4. Modify Pf

1 and repeat 2 and 3 until KC = 0.5.
5. Pf

1 will be the required precipitation over the following 1 month
in order for the joint deficit status to be normal (i.e. get out of
the drought), and (1� umonth

1 ) will be the probability of this
event.
mflow marginals mmod
j .

umod
7 umod

8 umod
9 umod

10 umod
11 umod

12

0.65 0.63 0.62 0.61 0.60 0.60

0.70 0.69 0.67 0.66 0.64 0.63

0.74 0.72 0.71 0.69 0.68 0.66

0.77 0.75 0.73 0.72 0.70 0.69

0.78 0.77 0.75 0.73 0.72 0.71

0.78 0.78 0.77 0.76 0.74 0.73

0.76 0.78 0.78 0.77 0.76 0.75

0.70 0.77 0.78 0.78 0.77 0.76

0.65 0.72 0.77 0.78 0.78 0.78

0.61 0.67 0.72 0.77 0.78 0.78

0.58 0.63 0.68 0.73 0.77 0.78

0.55 0.60 0.64 0.69 0.74 0.78
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Since all marginals and KC monotonically increase with increas-
ing Pf

1, this procedure is guaranteed a unique solution. However,
required precipitation for other months, such as Pf

2, may not be as-
sessed without assuming a value of prior precipitation Pf

1. Instead
of making extra assumptions, the total precipitation Sf

n ¼
Pn

i¼1Pf
i

in the future n-months (n 6 12) may be assessed with the follow-
ing revised procedure.
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Fig. 8. Regional comparison between precipitation JD
1. Assign an initial guess of Sf
n.

2. Compute precipitation marginals umonth
n by Sf

n, umonth
nþ1 by

ðSf
n þ Po

1Þ; . . . ; and umonth
12 by (Sf

n þ
P12�n

i¼1 Po
i ). The month when Pf

n

occurs is the ending month used in the modified SI procedure.
3. Compute CUn ;...;U12 ðumonth

n ; . . . ;umonth
12 Þ, and the corresponding KC

values.
4. Modify Sf

n and repeat 2 and 3 until KC = 0.5.
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5. Sf
n will be the required precipitation for the following n-months

in order for the joint deficit status to be normal, and (1� umonth
n )

will be the required excess probability.
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Fig. 10. Regional illustration of (a) left: required precipitation for July 1988 in order to
probability over Indiana based on the observations made from August 1987 to June 198
It should be noted that since we are not willing to make extra
assumptions about future precipitation, it is inevitable that a trun-
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(KC = 0.5 or JDI = 0), and the corresponding excess probability of station Alpine 2 NE
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adopted in order to compute the corresponding JDI values. When n
reaches 12, copulas CUd

ðumonth
12 Þ and KC will decay to the marginal

umonth
12 since no observed precipitation is available for a conditional

estimate. Hence, Sf
12 corresponds to the median of FXmonth

12
with the

ending month same as Pf
12.

An example is shown in Fig. 9 using the four selected events
adopted in Fig. 5. For Fig. 9a, since the drought is very severe, it re-
quires a very large amount of precipitation (around 250-mm) in or-
der to push JDI back to normal in the following month, which is
highly unlikely considering the statistics of monthly precipitation
in July. The excess probability provides a clear interpretation of
this situation, as it shows that the chance of drought recovery in
the following month is nearly zero. For the wet case shown in
Fig. 9b, it tells the opposite story as the required precipitation for
normal conditions is much less. The excess probability shows that
there is a high chance (around 0.8) to remain in wet status for the
following month. Fig. 9c is for an emerging drought, where excess
probabilities are around median suggesting that though there is
serious precipitation deficit in the past 1 month, the future drought
potential is less due to the accumulated moisture over the past
year. As for the prolonged drought shown in Fig. 9d, it suggests that
more than a year’s time might be required to recover from drought
status despite the rainfall within the past 2 months.

One advantage of the above assessment procedure is that the
results are easily understood, as the required precipitation is in
units of depth and associated with probability of exceedance.
Hence, it can provide useful drought information to interested par-
ties. A regional illustration of the required precipitation for July
1988 to achieve normality based on the observations made from
August 1987 to June 1988 and the corresponding probability of
exceedance are shown in Fig. 10 (JDI of June 1988 has been shown
in Fig. 6). As indicated in Fig. 10, a majority of Indiana would have
needed over 150-mm of rain in July 1988. Based on historical July
precipitation, this information can be further transformed into
exceedance probability, and it suggests similarly that the probabil-
ity for recovering to normal conditions is quite small (less than 0.1
for most of the state). From historical records, we know that this
was not achieved. Such drought maps are a more effective way
of relaying drought information, as most of the indices are not
amenable to statistical interpretation and are artificially converted
into drought severity levels.
Conclusions

The complex relationships between drought-related variables
have hindered characterization of overall drought status in the
past. However, copulas provide a promising method for character-
izing the complicated dependence structure as demonstrated in
this study by using a modified SI based on observed rainfall and
streamflow data. The following conclusions are presented on the
basis of this study.

(1) It was found that the modified SI is not only an index with
proper statistical basis, it also helps alleviate the effect of
seasonal variability. The gamma distribution was found to
be an appropriate distribution for precipitation marginals,
while the generalized extreme value distribution was a suit-
able choice for streamflow marginals based on analysis of
Indiana data.

(2) The dependence structures of precipitation and streamflow
marginals with window sizes varying from 1- to 12-month
were constructed via copulas. Empirical copulas are recom-
mended because of computational efficiency. The reliability
of empirical copulas was founded on the large sample sizes
adopted in this study.
(3) A joint deficit index (JDI) was proposed in this study using
the Kendall distribution function KC. The JDI can serve as a
probability-based drought index from a set of SIs with vari-
ous temporal window sizes. This is perceived as an improve-
ment over some drought indices that involve subjective
judgment or are estimated from linear weighted SIs. Besides
providing objective description of the overall drought status,
the JDI was shown to be capable of capturing both emerging
and prolonged droughts in a timely manner.

(4) The proposed JDI algorithm was found to be potentially suit-
able for other hydrologic variables, as evidenced by the per-
formance observed between precipitation and streamflow
JDIs. The JDI can be further applied on mixed marginals (con-
taining both precipitation and streamflow) to construct an
inter-variable drought index, where the entire dependence
structure of precipitation and streamflow marginals is
preserved.

(5) Drought severity can be assessed through the proposed JDI
approach. For instance, the required precipitation for achiev-
ing normal conditions (JDI = 0) can be estimated. The
required rainfall depth along with its exceedance probability
provides good interpretation of drought status.

The utilization of copulas in drought characterization was dem-
onstrated in this study. It is expected that copulas will play an
important role in drought analysis and perhaps in other hydrologic
studies as well as it enables multidimensional stochastic analysis.
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Appendix A:. Introduction to Student t-copulas

Student t-copulas belong to the family of meta-elliptical copu-
las (adopted by Genest et al. (2007)), and are an extension of the
well-known multivariate Student t-distribution (MVT). Student t-
copulas provide more flexibility in constructing joint distributions
where the marginals are not required to be t-distributed. The most
important feature of Student t-copulas is that they are one of the
few applicable parametric copula families when the number of
variables becomes large (>4), and many existing statistical tools
developed for MVT (e.g., Genz and Bretz, 2002) can be applied to
Student t-copulas as well. Student t-copulas can be expressed as:

CU1 ;...;Ud
ðu1; . . . ; udjR;vÞ ¼ Wd;vðw�1

v ðu1Þ; . . . ;w�1
v ðudÞjRÞ

¼ Wd;vðw�1
v ðFX1 ðx1ÞÞ; . . . ;w�1

v ðFXd
ðxdÞÞjRÞ

ðA:1Þ

where wv is the CDF of the univariate Student t-distribution, Wd,v is
the joint-CDF of MVT, and v is the degrees of freedom. The covari-
ance matrix R can be estimated from rank based statistics such as
Spearman’s correlation coefficient r instead of Pearson’s linear cor-
relation coefficient q (see Renard and Lang, 2007). Special cases are
Cauchy copulas for v = 1 and Gaussian copulas for v ?1 (both be-
long to the family of meta-elliptical copulas). The degrees of free-
dom v in Student t-copulas can be viewed as a parameter that
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Fig. A.1. Empirical copulas Cn (Eq. (2)) versus (a) left: Gaussian (Eq. (A.1) with m ?1) and (b) right: Student t-copulas (Eq. (A.1) with m = 2) for precipitation marginals
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allows for modeling fatter tails. Because there is no analytical solu-
tion for Wd,v, one needs to perform a numerical integration:

Wd;vðw�1
v ðu1Þ; . . . ;w�1

v ðudÞÞ

¼
Z w�1

v ðu1Þ

�1
� � �
Z w�1

v ðudÞ

�1

C pþv
2

� �
jRj�

1
2

ðpvÞd=2Cðv=2Þ
1þ zR�1zT

v

 !�pþv
2

dz1 � � �dzd

ðA:2Þ

where z = [z1, . . ., zd] and C(�) is the gamma function. While this
numerical integration can be achieved relatively easily for smaller
dimensions (less than or equal to 3 as in Genest et al. (2007)), the
computation becomes exceedingly time-consuming for higher
dimensions and a Monte Carlo approach is more efficient. An alter-
native method proposed by Genz and Bretz (2002) is adopted for
computing joint-CDFs of MVTs. Through the specification of covari-
ance matrix R, all bivariate mutual dependencies are preserved in
Student t-copulas, and hence the complicated dependence structure
can be modeled parametrically.

To identify the dependence across temporal scales, one of the
statistically exhaustive procedures is to construct the joint distri-
bution of multiple SImod

w values through copulas. Both Student t
and empirical copulas (Eq. (2)) are adopted to construct depen-
dence structure for the sets fumod

1 ;umod
2 ; . . . ;umod

12 g and
fvmod

1 ;vmod
2 ; . . . ;vmod

12 g. For Student t-copulas, the covariance matrix
R is evaluated from Spearman’s ri,j using procedures suggested by
Phoon et al. (2004), in which each element qi,j in R is computed by
qi,j = 2 sin (pri,j/6). Both Renard and Lang (2007) and Genest et al.
(2007) provide mathematical details for the use of Gaussian (Stu-
dent t when v ?1) and general meta-elliptical copulas. In
Fig. A.1, empirical copulas are plotted against two cases of Student
t-copulas, including Gaussian (GAU, Fig. A.1a) and the one with de-
gree of freedom v = 2 (T02, Fig. A.1b) as an example using precipi-
tation marginals fumod

1 ;umod
2 ; . . . ;umod

12 g of station Alpine 2 NE with
data length n = 1357 (note that long-term marginal umod

12 are not
available for the first 11 months of the entire 114-year precipita-
tion data). In contrast to GAU, T02 has a fatter tail and allows for
tail dependence (Genest et al., 2007). It can be observed that both
these parametric copulas exhibit similar performance when com-
pared to empirical copulas (close to the 45-degree line). By treating
the empirical copulas as the observed values, the root mean square
error (RMSE) of parametric copulas was computed, and was found
to be 0.0083 in Fig. A.1a and 0.0105 in Fig. A.1b. We also checked
the higher tail region. There are 61 data points with empirical cop-
ula values larger than 0.6, and the RMSE of these points in Fig. A.1a
and b are 0.0140 and 0.0160. The results suggested that GAU per-
form slightly better than T02 for station Alpine 2 NE, but overall
their differences are negligible. Similar results are found for other
precipitation and streamflow stations as well implying Student t-
copulas are viable parametric dependence model for droughts. By
testing various v values, a most appropriate Student t-copula
may be identified.

However, the computation of Student t-copulas is very demand-
ing. For the 12-dimensional structure, construction of a Student t-
copula takes several minutes on a personal computer to evaluate
one case of Eq. (A.1) and around half a day for a single station
adopted in this study. Hence, it is inconvenient for large-scale
and multi-site problems such as drought investigation. Therefore,
empirical copulas were adopted in the present study. Since the re-
cord lengths are quite large (�1400 data points), empirical copulas
are reliable as shown in the example in Fig. A.1. We only point out
the potential of Student t-copulas for drought-related problems.
For the study of very extreme droughts (outside the range of Cn)
or for truncated models (smaller dimensions), Student t-copulas
would be a possible choice.
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