G·E·O·S·H·A·R·E

An introduction to GEOSHARE's cyberinfrastructure: exchange and analysis of geo-spatial data through HUBzero

Nelson Villoria, GEOSHARE and NSF-DIBBS Co-Principal Investigator

Department of Agricultural Economics

Purdue University

GLP 2nd Open Science Meeting, Berlin March 21, 2014

This presentation is based on work with the following collaborators:

- HongJun Choi (Purdue U.)
- Delphine Derying (University of East Anglia)
- Joshua Elliot (AgMip)
- Thomas Hertel (Purdue U.)
- Erich Huebner (Purdue U.)
- Rajesh Kalyanam (Purdue U.)
- Danny Plouffe (McGill U.)
- Navin Ramankutty (McGill U.)
- Carol Song (Purdue U.)
- Lan Zhao (Purdue U.)

GEOSHARE's Mission

GEOSHARE is a decentralized network of scientists in many disciplines which mission is to provide:

- a freely available, global, spatially explicit database on agriculture, land use, and the environment
- analysis tools for scientists, decision makers, and development practitioners

GEOSHARE: Vision of a Network

GEOSHARE envisions a vibrant global network:

- contributing to shared cyberinfrastructure
- enhancing capacity for geospatial analysis
- applying geospatial tools to guide decision making related to food security, land use, environmental sustainability and poverty reduction

GEOSHARE's Network Today (Pilot Project)

Global Land Use Navin Ramankutty McGill U.

Global Water Use in Agriculture Stefan Siebert, U. Bonn

Global Climate Noah Diffenbaugh Stanford U.

GEOSHARE Economic Analysis and Project Coordination Thomas Hertel and Nelson Villoria Purdue University

Agriculture, Environment, & Poverty in Latin America Glenn Hyman, CIAT

Agriculture, Environment, & Poverty in Africa Jawoo Koo, IFPRI

Cyberinfrastructure for **GEOSPATIAL Analysis** Carol Song, Purdue University

Why a shared cyberinfrastructure for GEOSHARE?

Different Worlds

What Keeps Them Separate?

Commercial Software is expensive, requires powerful Hardware, and specialization SAS ≠ STATA ≠ ARCGis

Multidisciplinary collaborations to open the silos are costly

HUBzero technology seeks to break these barriers

Use the Web to

of research efforts and funds

Software to install or learn

How to do this?

- HUBzero is a technology developed at Purdue University with NSF funds for creating dynamic websites for scientific research and educational activities:
 - It's fully open source
 - Whatever can be compiled in Linux, can be run in the Hub
 - Rapid deployment of Graphical User Interfaces
 - Access to cluster computer resources

Have this worked elsewhere?

- We have been inspired by nanoHUB.org
- nanoHUB.org's objective is to transfer the knowledge generated in extensive nanotechnology facilities to others in academy and industry
- Created by the NSF-funded Network for Computational Nanotechnology.
- Next slides from Prof. Gerhard Klimeck, nanoHUB.org Director

The nanoHUB Proposition and Emerged (and Busted) Myths

Myth: Cannot use research codes for education Proposition Must write own code to do Be Developer Friendly research Experimentalists cannot use research codes Be Accessible NO Fnd-to-end Science Cloud Possible Building User Interfaces too Difficult Be User Friendly Must rewrite code for web deployment There is no incentive to share

codes

nanoHUB.org: Developer Collaboration Network

http://nanoHUB.org

Network members in 172 countries Over 12,000 simulations/year Over 300,000 users annually

GEOSHARE Example 1: Pegasus

Pegasus 1.0 Predicting Ecosystem Goods And Services Using Scenarios

- Published by/in:
 - Deryng, D., W. J. Sacks, C. C. Barford, and N. Ramankutty. 2011. "Simulating the Effects of Climate and Agricultural Management Practices on Global Crop Yield." Global Biogeochemical Cycles 25 (May): 18 PP.
- A global crop model that integrates climate, the effect of planting dates and cultivar choices, irrigation, and fertilizer application on crop yield for maize, soybean, and spring wheat.
- Useful for studying adaptation to climate change.

Inputs when we started:

■ Fortran Code with Model Equations:

```
This class will use the ghost ficles will to insert a collection of particles to insert a charge this is used to calculate the collection of the collection 
    have no net charge. This is used to calculate themselves and settings and settings.
       chemical potential and activity coefficien
  ass widom : public analysis {
              average<double> expsum; //!< Average of 1
     private:
                                                                                                                                        //!< count test
                                                                                                                                     //!< List of gh
        protected:
                    int ghostin;
                      long long int cnt;
                      vector<particle> g;
                          widom(int n=10);
                public:
                             string info();
                                 void insert(container &, energybase &
                              void add(particle);
                                void add(container &);
                                                                                return exp(muex());
                                   check(checkValue &);
                                                                                                                               -log(expsum.
```

Few megabytes of data in NetCDF format to calibrate the model.

Now: Pegasus 1.0 at geoshareproject.org

On-the-fly visualization of results

Download output for Further processing

GEOSHARE Example 2: Processing AgMIP's Aggregated Data

The AgMIP GRIDded crop modeling initiative

- Crop Modeling Teams grouped around Ag MIP Model Intercomp and Improvement
- The Global Gridded Crop Model Intercomparison (GGCMI):
 - Fast track phase:
 - 5 Crop Models
 - 5 Global General Circulation Models
 - 5 Representative Concentration Pathways
 - CO2 Fertilization and irrigation
 - □ 12 Crops
 - All the combinations ran from 1971 to 2099
- + 35,000 0.5°x0.5° grids with crop yields

The Problem

- Economic modelers use data aggregated to the country level
- NetCDF and other spatial data delivery formats are foreign to non-specialists
- Download of large grids is challenging even with good bandwith
- Storage is challenging for otherwise very good PCs
- How to make the data available to Users

The Solution

Good all-around R Code:

Reads data from Globus Online to the HUB

- Use aggregate() function
- Aggregates using mapping from XY coordinate to country, AEZs, up to the user.
- Calculate summary statistics (mean, etc.) or weighted averages using user provided weights (production, area, population, etc.)
- Wrap the R function around a Graphical User interface

The Result

, , , , , , , , , , , , , , , , , , ,	N WILL BE HERE	7			Help
Model EPIC GEPIC DDSSAT LPGmL IMAGE-LEITAP	GCM HadGEM2-ES IPSL-CM5A-LR MIROC-ESM-CHEM GFDL-ESM2M NorESM1-M	RCP hist rcp8p5 rcp6p0 rcp4p5 rcp2p6	co2 cnoco2 cnoco		
Path: Download Log				○ sorghum ○ sugarcane ○ sugar_beet	

Aggregation Possibilities

Aggregation Possibilities

Visualization

Visualization

Costs and Impacts

- Costs to the developers:
 - Write R function
 - Test it
 - Develop GUI
- Cost to the User:
 - None.
- Software Licenses, Hardware and Other Equipment
 - None.
 - All the processing on-the-fly and on university owned hardware
- Impacts:
 - Anyone interested in getting aggregated climate shocks for aggregated analysis can do so.

A peak inside the Hub: A Linux Workspace

If it can be run on Linux, it can be converted on a web application

Graphical User Interfaces

- HUBzero supports its own language, XML based, called RAPPTURE toolkit
- But also supports Python, Java, etc.
- User's knowledge and experience set boundaries.


```
<?xml version="1.0"?>
<run>
  <tool>
   <title>Graphing Calculator</title>
    <about>Press Simulate to view results.</about>
    <command>python @tool/graph.py @driver</command>
  </tool>
  <input>
    <string id="formula">
      <about>
        <label>Formula</label>
        <hints>Example: 2*x + 1</hints>
      </about>
      <size>30x5</size>
                                                      Tox 3
    </string>
    <number id="min">
      <about> <label>From x</label> </about>
      <default>0</default>
    </number>
    <number id="max">
      <about> <label>To x</label> </about>
      <default>1</default>
    </number>
  </input>
  <output>
    <curve id="result">
      <about> <label>Formula: Y ys X</label> </about>
    </curve>
  </output>
</run>
```


GEOSHARE Example 3: A workflow for assessing the value of improved data

Workflows: From data to analysis

- Gridded source data on land cover & use, water, poverty and environment
 flows into -
- Data reconciliation 'models', e.g. SPAM which produce usable data - for use in -
- Biophysical and economic models (e.g., DSSAT, IMPACT, GTAP)

Sensitivity of results at final stage determines value of improving quality of source data

Other considerations

GEOSHARE is free for all users and open to all

- Yes, users pay nothing.
- What about developers?
 - This is shared space
 - The cost of the Hub is around 50,000 per/year
 - Working on GEOSHARE governance cost-sharing model for self sustainability
 - But opportunities for economies of scale are huge.

Recent Funding For Expanding HUBzero's Spatial Capabilities

- A National Science Foundation grant
- Data Infrastructure Building Blocks (DIBBs) program
- □ GABBs: 1 of 4 implementation awards in 2013
- \$4.5M over 4 years
- Started October 1, 2013
- Collaboration with other awards

Sister geospatial hub projects

- Efforts in developing integrated geospatial data/modeling capabilities using HUBzero
 - Drinet hub (http://drinet.hubzero.org)
 - Geoshare hub (http://geoshareproject.org)
 - Water hub (http://water-hub.org)
 - Useful to Useable (u2u)
 http://drinet.hubzero.org/groups/u2u

Overarching goals

- Enabling geospatial modeling and analysis online
- Anyone can create an online geospatial app and share
- Further support for geospatial data
- Building blocks can be used by other projects

Building for self service (DIY) - Leverage successful software - Develop building blocks

- Questions
- Feedback?

■ Thanks!

■ nvillori@purdue.edu

